
Citation:
Yalsavar, M and Karimaghaee, P and Sheikh Akbari, A and Khooban, M-H and Dehmeshki, J and Al-
Majeed, S (2022) Kernel Parameter Optimization for Support Vector Machine Based on Sliding Mode
Control. IEEE Access, 10. ISSN 2169-3536 DOI: https://doi.org/10.1109/ACCESS.2022.3150001

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/8395/

Document Version:
Article (Accepted Version)

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/8395/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk


 

VOLUME XX, 2021 1 

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. 

Digital Object Identifier 10.1109/ACCESS.2021.Doi Number 

Kernel Parameter Optimization for Support 
Vector Machine Based on Sliding Mode Control 

Maryam Yalsavar 1, Paknoosh Karimaghaee 2, Akbar Sheikh-Akbari 3, Mohammad-Hassan 
Khooban 4, Jamshid Dehmeshki 5 and Salah Al-Majeed 6 
1School of Mathematics and Computer Science, University of Waterloo, Waterloo, Canada 
2School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran 
3 School of Built Environment, Engineering and Computing, Leeds Beckett University, Leeds, United Kingdom. 
4 Department of Engineering, Aarhus University, Aarhus, Denmark 
5 School of Computer Science and Mathematics Kingston University London, UK 
6 School of Computer Science, University of Lincoln, Lincoln, UK 

Corresponding author: Akbar Sheikh-Akbari (e-mail: A.Sheikh-Akbari@leedsbeckett.ac.uk) 

 

ABSTRACT Support Vector Machine (SVM) is a supervised machine learning algorithm, which is used for 

robust and accurate classification. Despite its advantages, its classification speed deteriorates due to its large 

number of support vectors when dealing with large scale problems and dependency of its performance on its 

kernel parameter. This paper presents a kernel parameter optimization algorithm for Support Vector Machine 

(SVM) based on Sliding Mode Control algorithm in a closed-loop manner. The proposed method defines an 

error equation and a sliding surface, iteratively updates the Radial Basis Function (RBF) kernel parameter or 

the 2-degree polynomial kernel parameters, forcing SVM training error to converge below a threshold value. 

Due to the closed-loop nature of the proposed algorithm, key features such as robustness to uncertainty and 

fast convergence can be obtained. To assess the performance of the proposed technique, ten standard 

benchmark databases covering a range of applications were used. The proposed method and the state-of-the-

art techniques were then used to classify the data. Experimental results show the proposed method is 

significantly faster and more accurate than the anchor SVM technique and some of the most recent methods. 

These achievements are due to the closed-loop nature of the proposed algorithm, which significantly has 

reduced the data dependency of the proposed method.   

INDEX TERMS Support vector machine, Sliding mode control, RBF kernel, 2-degree polynomial kernel, 

Optimal parameter, Classification speed.

I. INTRODUCTION 

Support Vector Machine (SVM) is one of the widely used 

machine learning classification algorithms, among other 

classifiers such as: nearest neighbor [1], boosted decision 

trees [2], regularized logistic regression [3], neural networks 

[4], and random forests [5]. SVM can be used to achieve 

robust and accurate classification results, even from non-

linearly separable input data, by mapping the data into a 

higher-dimensional space using kernels [6-7]. SVM is a 

Quadratic Programming (QP) problem that is aimed at 

finding a separating hyperplane to achieve maximum margin 

between classes of data [8-9]. It was first proposed for binary 

classification by Vapnik in the early 1990s, however, its 

extensions can be used for multi category problems [10]. 

Since SVM achieves a unique solution and can learn 

independently from the dimensionality of feature space, it is 

robust against overfitting and it is superior to other classifiers 

[6][10]. SVM has been used in many applications, including 

text categorization [11] and face detection [12], where it 

delivers robust and accurate results. SVM has also been used 

in some control branches, e.g., nonlinear control [13] and 

optimal control [14], because of the unique and optimal 

answer that it generates. Despite the advantages and wide 

range of applications of SVM, it suffers from some 

limitations such as low classification speed, especially when 

dealing with large scale problems, due to the large number 

of support vectors that SVM uses for classification [15-16], 

dependency of its performance on kernel parameter, kernel 

selection and its regularization parameter. SVM’s test phase 

time complexity is 𝑂(1) + 4𝑂(𝑛) + 2𝑂(𝑛3), where n is the 

number of support vectors [10]. This indicates that the SVM 

classification computation cost increases as its number of 
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support vectors increases. Various methods have been 

proposed by the researchers to find optimal kernel for SVM 

and reducing its number of support vectors as the 

performance and speed of the algorithm depend on the kernel 

function and its parameters. These techniques can be 

classified into two main groups called: closed-loop and 

open-loop methods, where they either try to find the optimal 

kernel function and its parameters or dealing with some of 

the SVM’s problems by modifying the training set or its set 

of support vectors. Closed-loop systems/algorithms have a 

feedback in their structure so that when a control input 

(input) changes the output of the system/algorithm, the 

resulting output is used for correcting and changing the 

control input (input) for arriving at the desired output. They 

operate in a self-adjusting mode, while open-loop 

systems/algorithms need a person to manually review and 

make the adjustments. Therefore, a close loop 

system/algorithm converges faster than open loop systems 

and is more robust to uncertainties and disturbances [17]. 

The closed loop-based methods for finding optimal kernel 

function and its parameters mainly use two approaches to 

achieve this. The group 1 methods first introduce an objective 

function, which is dependent on SVM and kernel parameters, 

then use different gradient descent methods to find optimal 

parameters for the kernel functions [18-23]. The group 2 

methods try to find the global optimal solution for the kernel 

and its regularization parameters [24-31]. Since the goal is 

arriving at a global solution, they use various optimization 

algorithm including genetic-, dragonfly- and evolutionary-

algorithms with different fitness functions. Genetic Algorithm 

(GA), Ant Colony Optimization (ACO) algorithm and Particle 

Swarm Optimization (PSO) algorithm are all Swarm 

Intelligence (SI) based methods, that one of their main 

properties is acting in a self-organized mode, and their 

capability to evolving the components into a good form 

without any external help. GA is population-based strategy 

which mainly includes five components: a random number 

generator, a fitness evaluation unit, a reproduction process, a 

crossover process, and a mutation operation. It first creates an 

initial population by random or heuristic, then determines the 

fitness and performance of each individual, and ranks them 

using a fitness function. When all individuals are ranked, the 

resulting low ranked individuals are omitted from the 

population, and the rest will be used in the reproduction 

process. GA uses confounded parameter settings, which is one 

of its main positive points, however, using a random procedure 

in the crossover and mutation process reduces the GA’s 

convergence speed towards the optimal values, which is 

considered as its biggest drawback.  

ACO is a metaheuristic approach, which has four main 

components: ant, pheromone, daemon action, and 

decentralized control. The ACO tries to find the shortest path 

to the optimal solution in a weighted graph. Hence, in the first 

step of each iteration every ant constructs its own solution 

(path) stochastically, then the paths that are built by different 

ants are compared and in the last step the level of each edge’s 

pheromone is updated. The ACO algorithm can be used in 

dynamic applications due to its great adaptation to changes 

such as new distances and suggests a positive feedback results 

in rapid discovery of good solutions. However, it has slower 

convergence speed compared with other heuristic-based 

methods and its theoretical analysis is difficult, research is 

experimental rather than theoretical and lacks a centralized 

processor to guide the algorithm towards good solutions. PSO 

is an optimization technique that is inspired by swarm 

behavior in birds flocking and fish schooling for searching 

global optimal solutions. The PSO algorithm first initializes 

the population, then calculates the fitness value for everyone. 

After finding all fitness values, it updates the population, the 

speed, and particles’ position. Except its first step, the other 

steps are repeated till termination condition is satisfied. The 

PSO has no mutation calculation, and its searching speed is 

very fast, but it cannot address scattering and non-coordinate 

system problems, and it is less exact at the regulation of its 

speed and the direction [32-33]. Although GA, ACO, and PSO 

algorithms are acting in a self-organized mode. They are not 

purely and truly closed-loop methods. For clarification, a 

block diagram representation of a closed-loop and open loop 

system are shown in Fig. 1.  

 

FIGURE 1.  A block diagram of a) a closed loop-, b) an open loop-
system.    

 

As it can be seen from Fig. 1b, in an open loop system, a 

collection of inputs (population) is fed to the system and the 

input (s) that create the best output, will be used for controlling 

the system or generating the new set of the inputs. This is 

exactly the procedure in SI based algorithms, while in a 

closed-loop system (Fig. 1.a) after choosing an initial value as 

the input, the closed-loop structure will update the input value 

based on the resulting output. In a closed-loop method, the best 

input value is not selected by comparing different potential 

inputs. 

Sliding Mode Control (SMC) is a closed-loop method, 

which benefits from this great property, because acting in a 

closed-loop manner brings more robustness against 

disturbances, uncertainties, and un-modeling, and has a 

superiority to those of SI based algorithms from this aspect. 

Unlike GA and ACO, the SMC has a vivid, simple, and well-

defined theory and mathematics behind itself, which makes it 

possible to theoretically analysis it. Unlike GA, SMC has no 

randomness in its structure, and based on the results it just 
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takes around 8 steps on average to arrive at its best result for 

different datasets, which is significantly faster than other 

methods. By defining the SVM algorithm as a closed-loop 

control system, it provides capability to control and monitor 

its transient and steady state behavior in detail. In the proposed 

method, Sliding Mode Control (SMC), which is a powerful 

tool for robust control of nonlinear systems, is used. Since 

there are uncertainties in the modeling of real-world systems, 

it is hard to control such plants with uncertain models and 

arrive at the desired performance. The SMC is often used to 

deliver good tracking in systems with uncertain models [34-

35]. For achieving this goal an error equation and a sliding 

surface are first defined and the SMC then tries to drive the 

state trajectory of the system onto the sliding surface and force 

the trajectory to maintain on this surface for all subsequent 

time by using a control input. The state trajectory is driven to 

the sliding surface by just estimating that it is in which part of 

the sliding surface. There is no strict region, and it is not 

important that how far the state is from the sliding surface. Due 

to this feature of the SMC, it is more robust than other 

approaches in the control field. Hence, the uncertainties of the 

system model do not affect its performance and its 

convergence is guaranteed [36]. Hence, in this research the 

application of the SMC in improving the performance of the 

SVM algorithm and reducing its limitation when dealing with 

large data, which are coming from different fields with no 

information and knowledge about their dynamic, is 

investigated.  

In this paper, a support vector machine based on sliding 

mode control RBF kernel parameter optimization is presented. 

The proposed method does not need a system model to find 

the optimum value for the RBF kernel parameter and 2-degree 

polynomial kernel for speeding up the test phase of SVM and 

improving its prediction accuracy. The proposed method first 

defines the specification of an error equation and the sliding 

surface and then it tries to arrive at a good tracking and low 

training error by updating the parameter(s) of those kernels. 

This procedure will be repeated until the validation accuracy 

continues its decreasing trend for a specific number of 

iterations. The effort of the proposed method to achieve high 

training accuracy results in prediction accuracy enhancement 

and finding a smaller set of support vectors, thereby reducing 

the speed of classification. Experimental results show that the 

anchor SVM does not necessarily generate the optimal number 

of support vectors and its kernel parameter selection could 

affect both accuracy and its resulting number of support 

vectors, where an optimal and smaller set of support vectors 

will increase both the speed and accuracy of the classification. 

Hence, the proposed method is significantly faster and more 

accurate than the anchor SVM technique. Furthermore, the 

proposed method generated more accurate results in compared 

with some of the latest techniques. All of these and its high 

robustness against uncertainties, which are existed in the data 

comes from different sources, are due to the closed-loop nature 

of the SMC algorithm used in conjunction with SVM method. 

The main contribution of this paper can be summarized as 

follows: 

(i) Looking at SVM’s problems and concepts from a 

control field of view and making a connection between these 

two fields. 

(ii) Using a non-model based and close loop method, 

SMC, for finding the optimal value for RBF kernel parameter.  

The rest of this paper is organized as follows. In Section II-

III, a brief overview of SVM and SMC methods are presented, 

respectively. In Section IV, the proposed method for finding 

the optimum kernel parameters is explained. Experimental 

results are presented in Section V and Section VI concludes 

the paper. 

 
II. SUPPORT VECTOR MACHINE 

There are many methods that can be used to classify two-

class linearly separable data but all of them give infinite 

answers. To find the best answer, the SVM method could be 

one of the solutions. The SVM finds the best hyperplane that 

separates the data using the idea that the best decision 

boundary is the one that has the maximum distance and margin 

from both classes of the data. SVM called maximum margin 

classifier, too. SVM has been shown to produce accurate 

results that can be explained easily, unlike other methods, e.g., 

neural networks. If the data known to be linearly separable, 

hard margin SVM is usually used. Assume that there are n data 

points in the dataset that their labels are either −1 or 1. The 

first step is to find its margin and then maximize it. If the 

equation of hyperplane be 𝑤𝑇𝑥 +  𝑏 = 0, where 𝑤 is an 

orthogonal vector to the hyperplane and 𝑏 is the bias then the 

distance of a point to the hyperplane can be formulated as: 

( ) 1, , .
T

i
i

w x b
d x i n

w

+
=  =  (1) 

where 𝑥𝑖  is the 𝑖th data point and 𝑑𝑖(𝑥) is its signed distance. 

It means if the data is on one side of the hyperplane, its sign 

will be positive, otherwise its sign is negative. By multiplying 

the distance of each point by its label, an unsigned distance, 

𝑦𝑖𝑑𝑖(𝑥) is calculated, where 𝑦𝑖  is the label of the data. To find 

the margin, min {𝑦𝑖
𝑤𝑇𝑥𝑖+𝑏

‖𝑤‖
}  is determined. 𝑤 and 𝑏 can be 

rescaled in a way that distance of all points to the hyperplane 

become at least one so the margin drives as follow: 

𝑚𝑎𝑟𝑔 𝑖 𝑛 = 𝑚𝑖𝑛 {𝑦𝑖
𝑤𝑇𝑥𝑖 + 𝑏

‖𝑤‖
}   𝑎𝑛𝑑  

𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1 

 𝑦𝑖𝑒𝑙𝑑𝑠 
→        𝑚 𝑎𝑟𝑔 𝑖 𝑛 =

1

‖𝑤‖
.      (2) 

SVM is searching for the maximum margin. So, based on 

eq. 2, the problem can be formulated as following quadratic 

problem: 

21

2

. . ( ) 1 1, , .

min
w

T

i i

w

s t y w x b i n+   =

 (3)
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Quadratic Problem (QP) is a convex problem that results in 

a global minimum or global maximum solution. By solving 

this QP problem, both 𝑤 and the hyperplane are calculated. 

Classifying nonlinear data with a linear algorithm like SVM 

can be done by reshaping and increasing the dimension of the 

data, resulting in a linear dataset. However, increasing the 

dimensionality of the data, the curse of dimensionality will 

appear. SVM uses the kernel concept in case of nonlinear data 

to benefit of dimension enhancement but gets rid of its curse 

[37]. In the case that SVM is used for classifying nonlinear 

data, it called soft margin SVM. In this case, the decision 

boundary is nonlinear because the data is not linearly 

separable. It means that some points cross the margin or locate 

in the other side of the hyperplane and cause misclassification 

like the one that shows in Fig. 2.  

 

FIGURE 2.  A nonlinearly separable classification problem. 

 

So, the constraint in hard margin SVM is not valid anymore 

because some points have 𝑦𝑖(𝑤
𝑇𝑥𝑖 +  𝑏) ≤ 1. The constraint 

is changed to include these cases or points, too. The nonlinear 

case problem is formulated as follows [38-39] 

2

1

1

2

. . ( ) 1 0 1, , .

min
n

ii
w

T

i i i i

w C

s t y w x b where and i n



 

=
+

+  −   =

  (4) 

In (4), 𝜉𝑖 is added to the constraint for the points that violate 

the constraint. But by changing the constraint in this way all 

points can violate this. So, the number of points that can 

violate the margin restricted by adding a penalty or 

regularization parameter, 𝐶. One can solve the dual form of 

eq. (4) as: 

1 1 1

1

1

2

. . 0, 0 1, ,

max
i

n n n T

i i j i j i ji i j

n

i i ii

y y x x

s t y C i n



  

 

= = =

=

−

=    =

  



 (5) 

where 𝛼𝑖 is the dual variable that obtains via the QP. The 

points that their 𝛼𝑖  is greater than zero are support vectors and 

the points that their 𝛼𝑖 is equal to 𝐶 are the ones that violate 

the constraint in hard margin SVM. 

Besides the advantages of SVM, due to the lack of a control 

perspective on the SVM problem, there are many aspects that 

are ignored. By studying SVM from a control point of view, 

the kernel function and its parameters are like the inputs of the 

SVM algorithm along with data, and that the algorithm finds 

support vectors as the output of SVM by using them in its 

training mode. So, both kernel and its parameters are vitally 

importance in SVM. Their unwise selection will result in poor 

set of support vectors, which increases the test error and time.  

It can be concluded that by using control methods, the 

inputs of the SVM algorithm can be found in a way that 

increase both performance and accuracy of the SVM 

algorithm. As both model and dynamic of the datasets are 

unknown, model-based methods of control theory are not 

applicable. Therefore, Sliding Mode Control (SMC), which is 

not a model-based algorithm and is highly robust to the 

dynamic of the data and is a closed-loop procedure, seems to 

be one of the solutions to speed up the algorithm when dealing 

with large nonlinear data. Moreover, both soft margin and hard 

margin problems have counterparts in control theory because 

they both grapple with training error in different ways. In hard 

margin SVM, a zero-training error is desired, while in soft 

margin SVM, a limited non-zero value error is acceptable; 

these two trends are achieved by defining some constraint in 

the SVM. In control theory, there are many procedures for 

managing the error, e.g., using integral of absolute/square 

error or paying attention to the transient behavior of the error 

besides its steady-state error, while in SVM mainly, steady 

state error is considered. In addition, there is a vast variety of 

control methods for dealing with the steady-state errors like 

methods in classical control, robust control, adaptive control, 

optimal control, nonlinear control, and intelligent control. In 

the next sections, after a brief introduction, SMC as a suitable 

robust control strategy will be used to develop desired kernel 

functions. Other control algorithms can be applied in the same 

way. 

 
III. SLIDING MODE CONTROL 

Sliding Mode Control (SMC) is a powerful tool for robust 

control of nonlinear systems [40]. It is based on the idea that 

controlling 1𝑠𝑡-order systems are much easier than controlling 

𝑛𝑡ℎ −order systems, so by defining a notation, an 𝑛𝑡ℎ order 

system is reformulated as a 1𝑠𝑡-order model [34]. This 

provides the construction of a sliding surface and drives the 

states of the system on it in the state space. Once the sliding 

surface is reached, the SMC keeps the states of the system on 

the close neighborhood of the sliding surface [40]. SMC 

consists of two part: the sliding surface, and the off-surface 

dynamics. The first step to drive this controller is to examine 

the expression of the error [40]. For the single input dynamic 

system of form 𝑦 =  𝑓(𝑥) + 𝑏(𝑥)𝑢, where 𝑦 is the output, 𝑢 

is the input signal, 𝑓(𝑥) and 𝑏(𝑥) are system model, which are 

not exactly specified and have uncertainties. The goal is 

tracking the desired signal 𝑦𝑑  by output, 𝑦. So, the error 

expression can be written as follows:
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𝑒 = 𝑦 − 𝑦𝑑                                                                   (6) 

where 𝑦 and 𝑦𝑑  are the output and desired output, 

respectively. A time-varying surface 𝑆(𝑦;  𝑡) in the state space 

R can then be defined by the scaler space 𝑆(𝑦;  𝑡) = 0 , where: 

𝑆(𝑦; 𝑡) = (
𝑑

𝑑𝑦
+ 𝜆)𝑛−1𝑒                                                   (7) 

where 𝜆 is a strictly positive constant and for 𝑛 = 2, Eq. 

(7) can be written as: 𝑆 =  𝑒 ̇ + 𝜆𝑒 .                                                                                                
The problem of tracking 𝑦 ≡ 𝑦𝑑 is equivalent to that of 

remaining on the surface S(t) for all 𝑡 > 0; indeed      

𝑆(𝑦, 𝑡) ≡ 0 represents a linear differential equation whose 

unique solution is 𝑒 ≡ 0, given its initial condition. Thus, the 

problem of tracking the n-dimensional vector 𝑦𝑑  can be 

reduced to that of keeping the scalar quantity 𝑆  at zero. 

 𝑆 =  𝑒 ̇ + 𝜆𝑒 ≡ 0                                                                  (8)                                                         

when the surface is driven to zero, the error drives to zero too, 

for 𝑡 → ∞  [40]. To show that, we work backward by 

postulating that the off-surface dynamics must be of the form: 

𝑆̇ = −𝑓(𝑆)                                                                  (9) 

where 𝑓(𝑆) can be any non-decreasing odd function. This 

shows that the change in 𝑆 and the 'distance' of the current state 

of the sliding surface, it is always opposite the sign of the 𝑆. 

The control input should force the states to approach it. So, 𝑆 ̇   
must be a function of our control input, 𝑢. 𝑆 ̇   must also be a 

function of the second derivative of the error, 𝑒 ̈  , to just be a 

function of the input, 𝑢, this implies that 𝑆 should only be a 

function of error, 𝑒, and its first derivative, 𝑒 ̇ . The simplest 

form of such a function that guarantees 𝑒 → 0 as 𝑡 → ∞ is 

given in Eq. (8) [40]. Consequently, driven of 𝑆 to zero, drives 

the tracking error, 𝑒, to zero, too. For Eq. (8) the sliding surface 

is a line with a slope of −𝜆 in the phase plane. By starting from 

any initial condition, the state trajectory drives to the sliding 

surface and then it slides along the surface exponentially 

towards the desired value, 𝑦𝑑 , with a time constant of 1/𝜆  
[34]. This procedure is shown in Fig. 3. 

SVM has widely used to classify non-linear separable data 

where there is always some uncertainty in selection of its 

parameters such as regularization and kernel. This has 

inspired the author to use the concept of sliding mode control 

to improve the performance of the SVM algorithm. 

 
I. PROPOSED ALGORITHM 

SVM uses the kernel function to increase the dimension of 

the data and make the data linearly separable in the resulting 

high dimension space. However, the desired kernel function 

or its parameters are not specified, as a result, various methods 

have been introduced to find the best kernel function and its 

parameters to increase the performance of SVM. There is a 

variety of kernel functions and some of their well-known  

 

 

 

FIGURE 3.  The state trajectory approaches to the sliding surface and its 
slide along the surface towards the desired value, 𝒙𝒅 (Graphical 
configuration of eq. 8) [34]. 

 

functions are RBF kernels and polynomial kernels, where 

different combination of these functions, e.g., linear, and 

nonlinear, are used to extend SVM capability to deal with non-

linear data. All these kernels have some parameters, which 

need to be chosen in an appropriate way to solve the 

mentioned problems. In this paper, the Sliding Mode Control 

(SMC) is used to find optimum parameters of the kernel 

functions.  To prove the effectiveness and performance of the 

proposed method, without losing its generality, the 𝛾 

parameter of the RBF kernel as an advanced form and 

parameters of a 2-degree polynomial kernel as a basic form are 

calculated using the proposed method. In sub-section A, the 

application of SMC to determine the optimum 𝛾 parameter of 

the RBF kernel is presented. In sub-section B, the SMC is used 

to compute the parameters of a polynomial kernel. 

A. SLIDING MODE CONTROL BASED SUPPORT 
VECTOR MACHINE RADIAL BASIS FUNCTION’S 
KERNEL PARAMETER OPTIMIZATION 

Fig. 4 shows a block diagram of the proposed Sliding Mode 

Control based Support Vector Machine Radial Basis 

Function’s kernel parameter optimization (SMC-SVM-RBF) 

method. The proposed method takes the input data and splits 

the data into three subsets, named training, test, and validation 

subsets. Then SVM trains with training subset and by using 

the initial value of the mentioned parameters. The ‘Train 

SVM’ block takes training subset and initial parameters 

including Radial Basis Function (RBF) kernel 

parameter, 𝛾𝑛𝑒𝑤, regularization parameters, 𝐶,  𝜆, 𝑑, 𝑉𝐸𝑜𝑙𝑑 , 

which represent the state of the training error to train the SVM, 

generating some Support Vectors (SVs) and their numbers, 

𝑁𝑆𝑉𝑠. The resulting classification information, SVs and 𝑁𝑆𝑉𝑠 , 
are then used to classify the train and validation data subsets, 

separately.

Sliding mode

Exponential convergence

Finite-time

Reaching phase

Slope -λ

S = 0
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FIGURE 4.  Block diagram of the proposed algorithm. 

 

The resulting classified train and validation subsets data are 

the independently assessed and Mis-Classified training data 

(𝑀𝐶) and their Mis-Classified labels (MC-lbs), the Training 

Error (𝑇𝐸) of the classified training subset and Validation 

Error (𝑉𝐸) of the classified validation data are calculated. The 

calculated 𝑀𝐶 and MC-lbs parameters are used to update the 

RBF kernel parameter, 𝑇𝐸 is used to define the time to perturb 

the initial value of the RBF kernel parameter and 𝑉𝐸 is used 

to terminate the algorithm. For perturbing the value of γ, the 

algorithm checks the value of the 𝑇𝐸. If it is zero, 𝛾𝑜𝑙𝑑  will be 

perturbed as follows until a non-zero training error is 

achieved: it checks the value of the RBF kernel parameter, if 

its value is smaller than a threshold, it perturbs the kernel 

parameter with a small value, otherwise it will be perturbed 

with a larger value. In this research, the process is started with  

a small initial RBF kernel parameter value and when then the 

training procedure starts updating 𝛾 as follows: It first 

initializes three counters named r1, r2, and r3 with values of 1,  

𝑡ℎ𝑟1 with the Number of MisClassified train data (NMC), and 

𝑡ℎ𝑟2 with the Number of Training Data (𝑁𝑇𝐷) and the 

Maximum Number of acceptable iterations to improve the 

Validation Error (𝑀𝑁𝑉𝐸) with a constant value. Then the 

algorithm goes through each element of Mis-Classified 

training data using its label, MC-lbs[r1], calculating its 𝑝 and 

𝑄. If MC-lbs[r1] = -1, q will be calculated using                        

𝑞 =  −
1

2
𝑄ϯ𝑝𝑇. After that the algorithm goes through elements 

of q using counter r2 and for each positive element of q , 𝛾2
𝑟2 

is calculated, when all elements of 𝛾2
𝑟2 are calculated, it 

computes  𝛾1 = 
1

𝑙
∑ 𝛾2

𝑖𝑙
𝑖=1  but if MC-lbs[r1] in not equal to -

1, it assigns 𝛾new to  𝛾1 . The algorithm then assigns 𝛾1 and 0 

to 𝛾′ and 𝛾1 , respectively and increment r1 to point to the next 

misclassified train data. This procedure is repeated for all 

misclassified train data. When 𝛾′is calculated for all 

misclassified train data, the algorithm will check r3, to see if 

r3 has reached its maximum number of iterations that are 

acceptable for improving the validation error (MNVE) 

threshold value. If not, a new value for 𝛾 is calculated as 

𝛾𝑛𝑒𝑤  =  ∑ 𝛾′𝑚
𝑗=1  and it backs to ‘Train SVM’ block and the 

Train subset

Train SVM

Assess classified data

Classification

TE = = 0

d =  1

MC_lbs[r1] == -1 

Calculate 

r2 < thr2

q[r2,1] > 0

r2 = r2 + 1

Validation subset

Classification

Assess classified data

r1 < thr1

VE > VEold

r3 = r3+1

r3  < MNVE
VEold = VE

Calculate

r1, r2, r3 =1

Thr1 = NMC , thr2 = NTD

MNVE = con.

Initialize C , , ,d = 0, 

VEold = 0,

Calculate p and Q using 

MC[ r1 ] 

Calculate 

Perturb 

No

No

No

No

No

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No

No

Yes 

VE 

MC

SVs & NSVs

This part uses 

for updating 

the parameter 

of RBF kernel
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procedure is repeated until MNVE reaches its predefined 

threshold value, otherwise the training is completed and 𝛾𝑛𝑒𝑤   
is taken 𝛾 and use it to calculate the SVs. The resulting SVs 

are then used to classify the test subset.  

The main aim of the proposed Sliding Mode Control based 

Support Vector Machine Radial Basis Function’s kernel 

parameter optimization (SMC-SVM-RBF) is to use sliding 

mode control to find an optimum value for 𝛾 parameter of the 

RBF kernel to improve the SVM’s performance in terms of its 

classification accuracy and speed. Mathematical prove of the 

proposed Sliding Mode Control based Support Vector 

Machine Radial Basis Function’s kernel parameter 

optimization (SMC-SVM-RBF) method is detailed as follows: 

To make a relationship between SVM and SMC in this article, 

the error expression, considering equation (6), can be assumed 

as: 

𝑒𝑗 =
1

2
|𝑦𝑗 − 𝑦𝑑

𝑗|
2
                                                 (10) 

where 𝑒𝑗  is the classification error, 𝑦𝑑 
𝑗

 and 𝑦𝑗 are the desired 

and predicted output values for each training data point related 

to the j-th misclassified training data, respectively. Based on 

SVM algorithm 𝑦𝑗  can be formulated as follows: 

𝑦𝑗(𝑥) = 𝑠𝑖𝑔𝑛[∑ 𝛼𝑖
𝑗
𝑦𝑖
𝑗
𝑒𝑥𝑝(−𝛾𝑗‖𝑥 − 𝑥𝑖‖

2) + 𝛽𝑗𝑛
𝑖=1 ]  (11) 

where 𝛼𝑖
𝑗
 is a dual variable, 𝑦𝑖

𝑗
 represent the output of the 

training data 𝑥𝑖, 𝑥 is a misclassified training data but the aim 

is to find its true class label, 𝑦𝑗(𝑥) is the predicted class label 

for the misclassified training data, 𝑥, 𝑛 is the number of the 

training data and 𝛽𝑗 is a bias related to the 𝑗𝑡ℎ misclassified 

training data. After defining the expression for error, sliding 

surface is defined by equation (8). In equation (8), 𝛾 is 

considered as the input and the aim is finding an optimum 

value for 𝛾 to minimize the training error. By calculating 𝑆̇ 

from eq. 8 and replacing 𝑆̇  with its value in eq. 9, the eq. 9 can 

be rewritten as: 

𝑒̈ + 𝜆𝑒̇ = −𝑓(𝑆)                                                                (12) 

where 𝑒̈  and 𝑒̇ are the second and first derivative of the error, 

𝑒, respectively, 𝑓(𝑆) is time-varying surface in the state space 

R and 𝜆 is a strictly positive constant. From equation (12), it 

can be seen that the first and second derivatives of 𝑦 are 

needed, as  𝑒 is a function of 𝑦 and 𝑦 is a function of 𝛾. Since 

sign function does not have a derivative, the sign function is 

replaced with a sigmoid function in different ways to solve and 

formulate this problem. As the algorithm uses misclassified 

training points to update the 𝛾 parameter, it may result in two 

types of misclassified data: a) the mis predicted label for the 

training point is −1 ( 𝑦 =  −1), where its correct label should 

be 1. In this paper, 𝑦 =  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) is considered as a 

function defining the belongness of a data point to the class 

Sign and sigmoid functions are illustrated in Figure 5. Figure 

5 shows that the larger positive 𝑥 values represent data with 

labels of 1 and when 𝑥 → +∞, the data point is classified to 

𝑦 =  1 class. However, if 𝑥 → −∞, 𝑦 becomes zero, this 

implies that this data point is not belong to class 𝑦 =  1. This 

misclassification is due to using unoptimized value for RBF 

parameter, 𝛾, and 𝛼𝑖. SVM uses the sign function to determine 

 

FIGURE 5.  illustration of (a) sign(x) and (b) sigmoid(x) function. 

 

the class of each data point within the dataset. However, the 

proposed method uses different functions to find accurate 

class for identified misclassified data points. For simplicity, in 

this article 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =  
1

1 + 𝑒−𝑥
  and  

−𝑠𝑖𝑔𝑚𝑜𝑖𝑑(−𝑥) =  
−1

1 + 𝑒𝑥
  functions, which are reversible 

functions with known derivative, are used to deal with 

misclassified data points in class -1 and 1, respectively. These 

two functions help to tackle the sign function irreversibility 

problem. 

Using the first assumption, eq. 11 can be re-written as: 

𝑦(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(∑  𝛼𝑖𝑦𝑖 𝑒𝑥𝑝( − 𝛾‖𝑥 − 𝑥𝑖‖
2) + 𝛽𝑛

𝑖=1 )           

                                                                                             (13) 

and the derivative of eq. 13 can be written as: 

𝑑𝑦

𝑑𝑥
= 𝑦(𝑥)(1 − 𝑦(𝑥))                                                 (14) 

Thus, by substituting eq. 13 into eq. 10 and removing 𝑗, 
which represent the 𝑗𝑡ℎ data point in eq. 10 and eq 11, 𝑒,  𝑒̇  and 

 𝑒̈ can be rewritten as: 

𝑒 =
1

2
|𝑦 − 𝑦𝑑|

2 

𝑒̇ = |𝑦 − 𝑦𝑑|
𝑑𝑦

𝑑𝛾
 

𝑒̇ = [|𝑦 − 𝑦𝑑| ∑ (−𝛼𝑖𝑦𝑖‖𝑥 − 𝑥𝑖‖
2) 𝑒𝑥𝑝( − 𝛾‖𝑥 −𝑛

𝑖=1

𝑥𝑖‖
2)]𝑦(1 − 𝑦)          (15) 

where 𝑥 ∈  𝑋 is a misclassified training data point within the 

set of misclassified training data points, 𝑋, 𝛼𝑖s are dual 

variables, 𝑦 is predicted class label for the misclassified data 

point, 𝑥, 𝑦𝑑  is the desirable class label for the misclassified 

data point, 𝑥, 𝑦𝑖 is the true label of the training data point, 𝑥𝑖, 
and 𝑛 is the total number of the training data points. 

𝑒̈ = [∑𝛼𝑖𝑦𝑖‖𝑥 − 𝑥𝑖‖
2 𝑒𝑥𝑝( − 𝛾‖𝑥 − 𝑥𝑖‖

2)

𝑛

𝑖=1

]

2

 

𝑦2(1 − 𝑦)2𝑠𝑖𝑔𝑛(𝑦 − 𝑦𝑑) 

+[|𝑦 − 𝑦𝑑|∑𝛼𝑖𝑦𝑖‖𝑥 − 𝑥𝑖‖

𝑛

𝑖=1

4

𝑒𝑥𝑝( − 𝛾‖𝑥 − 𝑥𝑖‖
2)] 

𝑦(1 − 𝑦)
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+|𝑦 − 𝑦𝑑|(1 − 𝑦) 

[∑𝛼𝑖𝑦𝑖‖𝑥 − 𝑥𝑖‖
2 𝑒𝑥𝑝( − 𝛾‖𝑥 − 𝑥𝑖‖

2)

𝑛

𝑖=1

]

2

 

𝑦(1 − 𝑦) 

−|𝑦 − 𝑦𝑑|𝑦
2(1 − 𝑦) 

[∑𝛼𝑖𝑦𝑖‖𝑥 − 𝑥𝑖‖
2 𝑒𝑥𝑝( − 𝛾‖𝑥 − 𝑥𝑖‖

2)

𝑛

𝑖=1

]

2

 

= [∑𝛼𝑖𝑦𝑖‖𝑥 − 𝑥𝑖‖

𝑛

𝑖=1

2

𝑒𝑥𝑝( − 𝛾‖𝑥 − 𝑥𝑖‖
2)]

2

 

(𝑠𝑖𝑔𝑛(𝑦 − 𝑦𝑑)𝑦
2(1 − 𝑦)2 + |𝑦 − 𝑦𝑑|[(1 − 𝑦)

2𝑦 − 𝑦2(1 − 𝑦)]) 

+|𝑦 − 𝑦𝑑|(1 − 𝑦)𝑦 

∑ 𝛼𝑖𝑦𝑖‖𝑥 − 𝑥𝑖‖
4 𝑒𝑥𝑝( − 𝛾‖𝑥 − 𝑥𝑖‖

2).𝑛
𝑖=1                                                                                                

                                                                                         (16) 

    For simplification 𝑚𝑖, 𝑛𝑖, and 𝑞𝑖are defined as: 

𝑚𝑖 = 𝛼𝑖𝑦𝑖‖𝑥 − 𝑥𝑖‖
2                                                        (17) 

𝑑𝑦

𝑑𝑥
= 𝑦(𝑥)(1 − 𝑦(𝑥))                                                      (18)                                                        

𝑞𝑖 = 𝑒𝑥𝑝( − 𝛾‖𝑥 − 𝑥𝑖‖
2)                                                (19) 

Now by replacing 𝑒 and the resulting expression for 𝑒̇  in 

eq. 8,  𝑆 can be rewritten as: 

𝑆 = 𝑒̇ + 𝜆𝑒 

𝑆 = [|𝑦 − 𝑦𝑑|∑(−𝛼𝑖𝑦𝑖‖𝑥 − 𝑥𝑖‖
2) 𝑒𝑥𝑝( − 𝛾‖𝑥 − 𝑥𝑖‖

2)

𝑛

𝑖=1

] 

𝑦(1 − 𝑦) +
𝜆

2
|𝑦 − 𝑦𝑑|

2                                                              (20) 

And by substituting (17), (18) and (19) into (15) and (16) 

and then substituting (15) and (16) into (12), 𝑆̇ can be derived 

as: 

𝑆̇ = (𝑠𝑖𝑔𝑛(𝑦 − 𝑦𝑑)𝑦
2(1 − 𝑦)2 

+|𝑦 − 𝑦𝑑|[(1 − 𝑦)
2𝑦 − 𝑦2(1 − 𝑦)]) 

[∑ 𝑚𝑖𝑞𝑖
𝑛
𝑖=1 ]2 +|𝑦 − 𝑦𝑑|(1 − 𝑦)𝑦  

∑

 
𝑛𝑖𝑞𝑖 − 𝜆|𝑦 − 𝑦𝑑|(1 − 𝑦)𝑦[∑ 𝑚𝑖𝑞𝑖

𝑛
𝑖=1 ]

= −𝑓(𝑆)
𝑛
𝑖=1                                                   (21) 

 As these equations are derived for misclassified training data 

points with 𝑦 =  −1, by replacing 𝑦 and 𝑦𝑑  into eq. 21, it 

results in: 

−16[∑ 𝑚𝑖𝑞𝑖
𝑛
𝑖=1 ]2 − 4𝜆[∑ 𝑚𝑖𝑞𝑖

𝑛
𝑖=1 ] − 4∑ 𝑛𝑖𝑞𝑖 = −𝑓(𝑆)

𝑛
𝑖=1   

                                                                                         (22) 

To solve eq. 22, this equation is written in matrix form as 

follows: 

−16(𝑞𝑇𝑀𝑀𝑇𝑞) − 4[𝑁𝑇 + 𝜆 ∗ 𝑀𝑇]𝑞 = −𝑓(𝑆)              (23) 

where 

{
 
 

 
 
𝑀 = [𝑚1 , 𝑚2, … ,𝑚𝑖   , … ,𝑚𝑛 ]

𝑇                      

𝑁 = [𝑛1 , 𝑛2, … . , 𝑛𝑖  , … , 𝑛𝑛]
𝑇                            

𝑞 = [𝑞1 , 𝑞2, … , 𝑞𝑖  , … , 𝑞𝑛]
𝑇                               

𝑖 = 1,2,⋯ , 𝑛                               
(𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎)

, 

 

For simplicity, by assuming 𝑄 = −16 𝑀𝑀𝑇 and                

𝑝 = −4 [𝑁𝑇 + 𝜆 ∗ 𝑀𝑇 ], eq. 23. Can be rewritten as: 

𝑞𝑇𝑄𝑞 + 𝑝𝑞 + 𝑓(𝑆) = 0                                                   (24) 

where 𝑄 𝜖 𝑅𝑛∗𝑛 , 𝑝 𝜖 𝑅1∗𝑛, and 𝑓(𝑆) are a matrix, a vector 

and a constant, respectively, where the value of 𝑓(𝑆) is 

calculated using the previous value of 𝛾. The optimum value 

of 𝑞 can be determined by calculating the derivative of eq. 24 

with respect to 𝑞: 

𝜕(𝑞𝑇𝑄𝑞 + 𝑝𝑞 + 𝑓(𝑆))

𝜕𝑞
= 𝑞𝑇𝑄 + 𝑄𝑞 + 𝑝𝑇  

= 0
 𝑄 𝑖𝑠 𝑎 𝑠𝑦𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑎𝑡𝑟𝑖𝑥 
→                     2𝑄𝑞 = −𝑝𝑇     

                                                                                         (25) 

As eq. 25 is an underdetermined problem, 𝑄 is not a full 

rank matrix and may have many solutions. In this paper, 

pseudo-inverse method is used to find an estimation for vector 

𝑞. Since 𝑝𝑇 is not in the column space of Q in general, the 

calculated q vector is an estimation of q, where the column 

space of Q, named as 𝐶(𝑄) can be written as:                      

𝐶(𝑄) =  −16𝑚1𝑀  and  𝑝 =  −4𝑀𝑇[𝑅𝑇 +  𝜆𝐼] and 𝑅 is an 

𝑛 𝑏𝑦 𝑛 matrix. Consequently, 𝑞 can be calculated using 

pseudo-inverse of 𝑄 as: 

𝑞 = −
1

2
𝑄†𝑝𝑇                                                                (26) 

where 𝑄† represents pseudo-inverse of Q and 𝑞 vector can be 

determined by solving eq. 26. However, only the positive 

elements of 𝑞, which satisfy eq. 19, are acceptable. Using eq. 

19, Γ vector can be calculated and written as follows:  

𝛤 = [𝛾2
1, 𝛾2

2, … , 𝛾2
𝑖 , … , 𝛾2

𝑙]  ∀𝑖 = 1,⋯ , 𝑙.              (27) 

where 𝑙 is the number of positive elements of 𝑞 vector and 𝛾2
𝑖  

is the corresponding 𝛾 value of the 𝑖𝑡ℎ positive element of 𝑞. 

By calculating the average of all elements of ᴦ vector, 𝛾1 is 

derived as: 

𝛾1 =
1

𝑙
∑ 𝛾2

𝑖𝑙
𝑖=1                                                                 (28) 

In the second stage, for the mis-predicted data with 𝑦 =  1,  
𝑦 =  −𝑠𝑖𝑔𝑚𝑜𝑖𝑑(−𝑥) function, which is illustrated in Fig. 6, 

is used to determine the level of belongness of each of these 

data points to their current class. From Fig. 6, it can be seen 

that data points with large negative 𝑥 values are belonging to   

𝑦 =  −1 class and data points with large positive values   

( 𝑥 → +∞), which have 𝑦 =  0, are belonging to other class.
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FIGURE 6. An illustration of 𝒚 = −𝒔𝒊𝒈𝒎𝒐𝒊𝒅(−𝒙) function. 

 

By considering −𝑠𝑖𝑔𝑚𝑜𝑖𝑑(−𝑥) function for these mis-

classified data points, eq. 11 can be re-written as: 

𝑦(𝑥) = −𝑠𝑖𝑔𝑚𝑜𝑖𝑑(−∑ 𝛼𝑖𝑦𝑖 𝑒𝑥𝑝( − 𝛾‖𝑥 − 𝑥𝑖‖
2) − 𝛽𝑛

𝑖=1 )
                                                                               (29) 

and the derivative of eq. 29 can be written as: 

( )(1 ( ))
dy

y x y x
dx

= − +                                                    (30) 

Thus, by substituting eq. 29 into eq. 10 and removing 𝑗, 
which represent the 𝑗𝑡ℎ data point in eq. 10 and eq 11, 𝑒,  𝑒̇  and 

 𝑒̈ can be rewritten as: 

𝑒 =
1

2
|𝑦 − 𝑦𝑑|

2 

𝑒̇ = |𝑦 − 𝑦𝑑|
𝑑𝑦

𝑑𝛾
 

𝑒̇ = −[|𝑦 − 𝑦𝑑| ∑ (−𝛼𝑖𝑦𝑖‖𝑥 − 𝑥𝑖‖
2) 𝑒𝑥𝑝( − 𝛾‖𝑥 −𝑛

𝑖=1

𝑥𝑖‖
2)]𝑦(1 + 𝑦)                                                                                                   

                                                                                         (31) 

𝑒̈ = [∑𝛼𝑖𝑦𝑖‖𝑥 − 𝑥𝑖‖
2 𝑒𝑥𝑝( − 𝛾‖𝑥 − 𝑥𝑖‖

2)

𝑛

𝑖=1

]

2

𝑦2(1

+ 𝑦)2𝑠𝑖𝑔𝑛(𝑦 − 𝑦𝑑) 

−[|𝑦 − 𝑦𝑑|∑𝛼𝑖𝑦𝑖‖𝑥 − 𝑥𝑖‖
4 𝑒𝑥𝑝( − 𝛾‖𝑥 − 𝑥𝑖‖

2)

𝑛

𝑖=1

] 𝑦(1

+ 𝑦) 

+|𝑦 − 𝑦𝑑|(1 + 𝑦) [∑𝛼𝑖𝑦𝑖‖𝑥 − 𝑥𝑖‖
2 𝑒𝑥𝑝(

𝑛

𝑖=1

− 𝛾‖𝑥 − 𝑥𝑖‖
2)]

2

𝑦(1 + 𝑦) 

+|𝑦 − 𝑦𝑑|𝑦 [∑𝛼𝑖𝑦𝑖‖𝑥 − 𝑥𝑖‖
2 𝑒𝑥𝑝( − 𝛾‖𝑥 − 𝑥𝑖‖

2)

𝑛

𝑖=1

]

2

𝑦(1

+ 𝑦) 

 

= [∑𝛼𝑖𝑦𝑖‖𝑥 − 𝑥𝑖‖
2 𝑒𝑥𝑝( − 𝛾‖𝑥 − 𝑥𝑖‖

2)

𝑛

𝑖=1

]

2

(𝑠𝑖𝑔𝑛(𝑦

− 𝑦𝑑)𝑦
2(1 + 𝑦)2 

+|𝑦 − 𝑦𝑑|[(1 + 𝑦)
2𝑦 + 𝑦2(1 + 𝑦)]) 

−|𝑦 − 𝑦𝑑|(1 + 𝑦)𝑦∑𝛼𝑖𝑦𝑖‖𝑥 − 𝑥𝑖‖
4 𝑒𝑥𝑝( − 𝛾‖𝑥 − 𝑥𝑖‖

2)

𝑛

𝑖=1

 

          (32) 

And by substituting (17), (18) and (19) into (31) and (32) 

and then substituting (31) and (32) into (12), and replacing 𝑦 

and 𝑦𝑑  with 1 and -1, respectively, 𝑆̇ can be derived as: 

16[∑ 𝑚𝑖𝑞𝑖
𝑛
𝑖=1 ]2 − 4𝜆[∑ 𝑚𝑖𝑞𝑖

𝑛
𝑖=1 ] − 4∑ 𝑛𝑖𝑞𝑖 = −𝑓(𝑆)

𝑛
𝑖=1                          

                                                                                         (33) 

To solve eq. 33, assuming  𝑄 = 16 𝑀𝑀𝑇 and                            

𝑝 = −4 [𝑁𝑇 + 𝜆𝑀𝑇 ], eq. 33 can be written in matrix form as 

follows: 

𝑞𝑇𝑄𝑞 + 𝑝𝑞 + 𝑓(𝑆) = 0                                                   (34) 

where 𝑀, 𝑁 and 𝑞 were introduced in eq. 23. The resulting eq. 

34 along with the procedures explained in eq. 25 to 28 are then 

used to calculate 𝛾1 parameter for this misclassified data point 

with 𝑦 =  1. 

For each mis-classified data point, based on its predicted 𝑦, 

one of the above-mentioned two methods is used to calculate 

its γ
1
 value. The resulting γ

1
s for all mis-classified data points 

are then put together to form the γ′ vector, as follows: 

𝛾 ′ = [𝛾1
1, 𝛾1

2, … , 𝛾1
𝑖 , … , 𝛾1

𝑚]  ∀𝑖 = 1,⋯ ,𝑚           (35) 

where m is the total number of mis-classified data points and 

γ
1
i  represents γ

1
 for mis-classified data point i. 

    Finally, a value for RBF kernel parameter, γ,  is determined 

by calculating the average of 𝛾′ vector components using eq. 

36: 

𝛾 =
1

𝑚
∑ 𝛾1

𝑖𝑚
𝑖=1                                                                  (36) 

where 𝑚 is the total number of misclassified training data 

points. The resulting 𝛾 will be used as the RBF kernel 

parameter in the next iteration. 

𝛾 optimization procedure will be continued until the total 

number or iteration is reached or the validation error does not 

change for a pre-defined number of iterations.   

B. POLYNOMIAL OPTIMAL KERNEL PARAMETER 
ESTIMATION USING SVM BASED ON SMC 

Without losing the generality of the algorithm, the general 

form of a 2𝑛𝑑 order polynomial kernel is considered as 

(𝑎𝑥𝑇𝑥𝑗 + 𝑏)
2
, where 𝑎 and 𝑏 are the polynomial kernel 

parameters, 𝑥 is a mis-classified training data point and 𝑥𝑗  is 

the 𝑗𝑡ℎ training data point for 𝑗 = 1,… , 𝑛 and 𝑛 is the total 

number of the training data points. The aim of this algorithm

y

x

-1

- 0.5
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is to find optimum polynomial parameters. In this paper, for 

simplicity a 2𝑛𝑑 order polynomial was considered. However,  

a higher-order polynomial can also be used in a similar way. 

The procedure of the proposed SVM based on SMC algorithm 

for finding polynomial kernel optimum values is the same as 

the one that is explained for RBF method, which is illustrated 

in Fig. 4 with some differences. These differences are detailed 

as follows: 

1. In this algorithm, polynomial kernel parameters, 𝑎 

and 𝑏, are first initialized with ones and then updated 

in each iteration. If using these initial values results 

in a zero-training error, their values are perturbed in 

the same way that was explained in Section IV.A for 

RBF parameter. These initial values were used 

because Zhang [23] and Zhiliang Liu [30] had also 

used them in their techniques and the performance of 

the proposed method in this paper, will be compared 

with their techniques.  

2. Both resulting positive and negative values of 𝑞 

vector are acceptable in polynomial kernel parameter 

optimization, while only positive values of 𝑞 vector 

were acceptable for updating RBF parameter 

optimization, as explained in Section IV.A.  

 

To find optimum values for the polynomial kernel 

parameters, 𝑎 and 𝑏, the procedure is started using eq. 8 and 

12, where 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) and −𝑠𝑖𝑔𝑚𝑜𝑖𝑑(−𝑥) functions are 

used for the two types of the mis-classified data points, 𝑦 =
 −1 and        𝑦 =  1, respectively. Hence, eq. 8 and 12 are 

derived using eq. 10 and 11 for each type of mis-classified data 

points, as follows: 

 

1) PROCEDURE FOR FINDING OPTIMUM VALUE FOR 𝑎 

WHEN 𝑦 =  −1 

By replacing the 2𝑛𝑑 order polynomial kernel in eq. 13, 

𝑦(𝑥) can be written as: 

𝑦(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(∑  𝛼𝑖𝑦𝑖(𝑎𝑥
𝑇𝑥𝑖 + 𝑏) + 𝛽

𝑛
𝑖=1 )               (37) 

And 𝑒̇,  ë can be derived by replacing eq 37 into eq. 10 and 

calculating 1st and 2nd derivative with respect to 𝑎. 

𝑒̇ = |𝑦 − 𝑦𝑑|
𝑑𝑦

𝑑𝑎
 

𝑒̇ = [|y − yd|∑2αiyix
Txi(ax

Txi + b)

n

i=1

] y(1 − y) 

                                                                                           (38) 

𝑒̈ = (𝑠𝑖𝑔𝑛(𝑦 − 𝑦𝑑)𝑦
2(1 − 𝑦)2

+ |𝑦 − 𝑦𝑑|[(1 − 𝑦)
2𝑦 − 𝑦2(1 − 𝑦)]) 

[∑2𝛼𝑖𝑦𝑖𝑥
𝑇𝑥𝑖(𝑎𝑥

𝑇𝑥𝑖 + 𝑏)

𝑛

𝑖=1

]

2

+ |𝑦 − 𝑦𝑑|(1 − 𝑦)𝑦∑2𝛼𝑖𝑦𝑖𝑥
𝑇𝑥𝑖𝑥

𝑇𝑥𝑖

𝑛

𝑖=1

 

                                                                                        (39) 

Now by replacing 𝑒 and the resulting expression for 𝑒̇  in 

eq. 8,  𝑆 can be rewritten as: 

𝑆 = 𝑒̇ + 𝜆𝑒 
𝑆 = [|𝑦 − 𝑦𝑑| ∑ 2𝛼𝑖𝑦𝑖𝑥

𝑇𝑥𝑖(𝑎𝑥
𝑇𝑥𝑖 + 𝑏)

𝑛
𝑖=1 ]𝑦(1 − 𝑦) +

𝜆

2
|𝑦 − 𝑦𝑑|

2             

                                                                                        (40) 

And by substituting eq. 38 and 39 into eq. 12, 𝑆̇ can be derived 

as: 

𝑆̇ = 𝑒̈ + 𝜆𝑒̇ = −𝑓(𝑆) 

𝑆̇ = (𝑠𝑖𝑔𝑛(𝑦 − 𝑦𝑑)𝑦
2(1 − 𝑦)2 

+|𝑦 − 𝑦𝑑|[(1 − 𝑦)
2𝑦 − 𝑦2(1 − 𝑦)]) 

[∑2𝛼𝑖𝑦𝑖𝑥
𝑇𝑥𝑖(𝑎𝑥

𝑇𝑥𝑖 + 𝑏)

𝑛

𝑖=1

]

2

+ |𝑦 − 𝑦𝑑|(1

− 𝑦)𝑦∑2𝛼𝑖𝑦𝑖𝑥
𝑇𝑥𝑖𝑥

𝑇𝑥𝑖 + 𝜆|𝑦 − 𝑦𝑑|(1

𝑛

𝑖=1

− 𝑦)𝑦 
[∑ 2𝛼𝑖𝑦𝑖𝑥

𝑇𝑥𝑖(𝑎𝑥
𝑇𝑥𝑖 + 𝑏)

𝑛
𝑖=1 ] = −𝑓(𝑆)     

                                                                                         (41) 

Now by considering 𝑚𝑖 =  2𝛼𝑖𝑦𝑖𝑥
𝑇𝑥𝑖,                                   

𝑛𝑖 =  2𝛼𝑖𝑦𝑖𝑥
𝑇𝑥𝑖𝑥

𝑇𝑥𝑖 and 𝑞𝑖 = (𝑎𝑥
𝑇𝑥𝑖 + 𝑏) and replacing 

𝑦 =  −1 and 𝑦𝑑  = 1 in eq. 41 and rewriting it in a matrix 

form, eq. 41 can be rewritten as: 

𝑞𝑇𝑄𝑞 + 𝑝𝑞 + 𝑓(𝑆) + 𝑁𝑇𝑟 = 0                                  (42) 

where 𝑄 = −16𝑀𝑀𝑇,  𝑝 =  −4𝜆𝑀𝑇,                                           

𝑁 =  −4[𝑛1, 𝑛2, … , 𝑛𝑛]
𝑇, 𝑀 = [𝑚1,𝑚2, … ,𝑚𝑛]

𝑇 ,              

 𝑟 = [1,1, . . ,1]𝑇  and  𝑛 is the total number of the training data 

points. The optimum value of 𝑞 can be determined by 

calculating the derivative of eq. 42 with respect to 𝑞: 

𝜕(𝑞𝑇𝑄𝑞 + 𝑝𝑞 + 𝑓(𝑆) + 𝑁𝑇𝑟)

𝜕𝑞
= 𝑞𝑇𝑄 + 𝑄𝑞 + 𝑝𝑇 

= 0
 𝑄 𝑖𝑠 𝑎 𝑠𝑦𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑎𝑡𝑟𝑖𝑥 
→                     2𝑄𝑞 = −𝑝𝑇     

Now the 𝑞 vector can be written as: 

𝑞 = −
1

2
𝑄†𝑝𝑇                                                                 (43) 

where 𝑄† represents pseudo-inverse of Q and 𝑞 vector can be 

determined by solving eq. 43. By using 𝑞𝑖 = (𝑎2
𝑖 𝑥𝑇𝑥𝑖 + 𝑏), 

ᴦ vector is obtained as: 

𝛤 = [𝑎2
1, 𝑎2

2, … , 𝑎2
𝑖 , … , 𝑎2

𝑙] ∀𝑖 = 1,… , 𝑙                  (44) 

where 𝑙  is the total number of 𝑞 elements and 𝑎2
𝑖  is the 𝑖𝑡ℎ 

element of 𝛤 and 𝑎2
𝑖 =

𝑞𝑖 − 𝑏

 𝑥𝑇𝑥𝑖  
.  

Finally, 𝑎1 is computed by determining the average of all 𝛤  

elements: 

𝑎1 =
1

𝑙
∑ 𝑎2

𝑖𝑙
𝑖=1                                                                (45)
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2) PROCEDURE FOR FINDING OPTIMUM VALUE FOR 𝑏 

WHEN 𝑦 =  −1 

By replacing 𝑦(𝑥) from eq. 37 into eq. 10 and calculating 

1st and 2nd derivatives of the resulting 𝑒 with respect to 𝑏, 𝑒̇, 

and  ë can be determined. Then by replacing the resulting 𝑒,  

𝑒̇, and  ë into eq. 8 and 9, 𝑆 and 𝑆̇, can be derived, as follows: 

𝑆 = 𝑒̇ + 𝜆𝑒 

𝑆 = [|𝑦 − 𝑦𝑑|∑2𝛼𝑖𝑦𝑖(𝑎𝑥
𝑇𝑥𝑖 + 𝑏)

𝑛

𝑖=1

] 𝑦(1 − 𝑦) 

+
𝜆

2
|𝑦 − 𝑦𝑑|

2                                                                        (46) 

𝑆̇ = 𝑒̈ + 𝜆𝑒̇ = −𝑓(𝑆) 

𝑆̇ = (𝑠𝑖𝑔𝑛(𝑦 − 𝑦𝑑)𝑦
2(1 − 𝑦)2 

+|𝑦 − 𝑦𝑑|[(1 − 𝑦)
2𝑦 − 𝑦2(1 − 𝑦)])  

[∑2𝛼𝑖𝑦𝑖(𝑎𝑥
𝑇𝑥𝑖 + 𝑏)

𝑛

𝑖=1

]

2

 

+ |𝑦 − 𝑦𝑑|(1 − 𝑦)𝑦∑ 2𝛼𝑖𝑦𝑖  
𝑛
𝑖=1  

+ 𝜆|𝑦 − 𝑦𝑑|(1 − 𝑦)𝑦 [∑ 2𝛼𝑖𝑦𝑖(𝑎𝑥
𝑇𝑥𝑖 + 𝑏)

𝑛
𝑖=1 ] 

= −𝑓(𝑆)                                                                          (47)   

Assuming 𝑚𝑖 =  2𝛼𝑖  𝑦𝑖  and 𝑞𝑖 =  (𝑎𝑥
𝑇 𝑥𝑖 + 𝑏) and 

replacing 𝑦 =  −1 and 𝑦𝑑  =  1 in eq. 47, and eq, 47 can be 

written in a matrix form as follows:  

𝑞𝑇𝑄𝑞 + 𝑝𝑞 + 𝑓(𝑆) − 4𝑀𝑇𝑟 = 0                                    (48) 

where 𝑄 = −16𝑀𝑀𝑇,  𝑝 =  −4𝜆𝑀𝑇,                                           

𝑀 = [𝑚1, 𝑚2, … ,𝑚𝑛]
𝑇,               𝑟 = [1,1, . . ,1]𝑇  and  𝑛 is the 

total number of the training data points. The optimum value of 

𝑞 can be determined by calculating the derivative of eq. 48 

with respect to 𝑞: 

𝜕(𝑞𝑇𝑄𝑞 + 𝑝𝑞 + 𝑓(𝑆) − 4𝑀𝑇𝑟)

𝜕𝑞
= 𝑞𝑇𝑄 + 𝑄𝑞 + 𝑝𝑇 

= 0
 𝑄 𝑖𝑠 𝑎 𝑠𝑦𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑎𝑡𝑟𝑖𝑥 
→                     2𝑄𝑞 = −𝑝𝑇     

Now the 𝑞 vector can be written as: 

𝑞 = −
1

2
𝑄†𝑝𝑇                                                                 (49) 

where 𝑄† represents pseudo-inverse of Q and 𝑞 vector can be 

determined by solving eq. 49. By using 𝑞𝑖 = (𝑥
𝑇𝑥𝑖 + 𝑏2

𝑖 ), ᴦ 
vector is obtained as: 

𝛤 = [ 𝑏2
1,  𝑏2

2, … , 𝑏2
𝑖 , … , 𝑏2

𝑙 ] ∀𝑖 = 1,… , 𝑙                  (50) 

where 𝑙  is the total number of 𝑞 elements and 𝑏2
𝑖  is the 𝑖𝑡ℎ 

element of 𝛤 and 𝑏2
𝑖 = 𝑞𝑖 − 𝑥

𝑇 𝑥𝑖 . Finally, the average of all 

𝛤  elements is defined as 𝑏1, as follows: 

𝑏1 =
1

𝑙
∑ 𝑏2

𝑖𝑙
𝑖=1                                                                 (51) 

In the second stage, to find optimum values for the 

polynomial kernel parameters, 𝑎 and 𝑏, the procedure is 

started using eq. 8 and 12, where −𝑠𝑖𝑔𝑚𝑜𝑖𝑑(−𝑥) function is 

used for the mis-classified data points with 𝑦 =  1. Hence, eq. 

8 and 12 are derived using eq. 10 and 11, as follows: 

 

3) PROCEDURE FOR FINDING OPTIMUM VALUE FOR 𝑎 

WHEN 𝑦 =  1 

By replacing the 2𝑛𝑑 order polynomial kernel in eq. 13, 

𝑦(𝑥) can be rewritten as: 

𝑦(𝑥) = −𝑠𝑖𝑔𝑚𝑜𝑖𝑑(−∑  𝛼𝑖𝑦𝑖(𝑎𝑥
𝑇𝑥𝑖 + 𝑏) − 𝛽

𝑛
𝑖=1 )         (52) 

By replacing 𝑦(𝑥) from eq. 52 into eq. 10 and calculating 1st 

and 2nd derivative of the resulting 𝑒 with respect to 𝑎, 𝑒̇, and 

 ë can be determined. Then by replacing the resulting 𝑒,  𝑒̇, and 

 ë into eq. 8 and 9, 𝑆 and 𝑆̇, can be derived, as follows: 

 

𝑆 = 𝑒̇ + 𝜆𝑒 

𝑆 = [−|𝑦 − 𝑦𝑑|∑2𝛼𝑖𝑦𝑖𝑥
𝑇𝑥𝑖(𝑎𝑥

𝑇𝑥𝑖 + 𝑏)

𝑛

𝑖=1

] 𝑦(1 + 𝑦)

+
𝜆

2
|𝑦 − 𝑦𝑑|

2 

                                                                                         (53) 

𝑆̇ = 𝑒̈ + 𝜆𝑒̇ = −𝑓(𝑆) 

𝑆̇ = (𝑠𝑖𝑔𝑛(𝑦 − 𝑦𝑑)𝑦
2(1 + 𝑦)2

+ |𝑦 − 𝑦𝑑|[(1 + 𝑦)
2𝑦 + 𝑦2(1 + 𝑦)]) 

[∑2𝛼𝑖𝑦𝑖𝑥
𝑇𝑥𝑖(𝑎𝑥

𝑇𝑥𝑖 + 𝑏)

𝑛

𝑖=1

]

2

− |𝑦 − 𝑦𝑑|(1

+ 𝑦)𝑦∑2𝛼𝑖𝑦𝑖𝑥
𝑇𝑥𝑖𝑥

𝑇𝑥𝑖 − 𝜆|𝑦 − 𝑦𝑑|(1

𝑛

𝑖=1

+ 𝑦)𝑦 

[∑2𝛼𝑖𝑦𝑖𝑥
𝑇𝑥𝑖(𝑎𝑥

𝑇𝑥𝑖 + 𝑏)

𝑛

𝑖=1

] = −𝑓(𝑆) 

                                                                                         (54) 

Now by considering 𝑚𝑖 =  2𝛼𝑖𝑦𝑖𝑥
𝑇𝑥𝑖,                                   

𝑛𝑖 =  2𝛼𝑖𝑦𝑖𝑥
𝑇𝑥𝑖𝑥

𝑇𝑥𝑖 and 𝑞𝑖 = (𝑎𝑥
𝑇𝑥𝑖 + 𝑏) and replacing 

𝑦 =  1 and 𝑦𝑑  = −1 in eq. 54 and rewriting it in a matrix 

form, eq. 54 can be rewritten as: 

𝑞𝑇𝑄𝑞 + 𝑝𝑞 + 𝑓(𝑆) + 𝑁𝑇𝑟 = 0                                  (55) 

where 𝑄 = 16𝑀𝑀𝑇,  𝑝 =  −4𝜆𝑀𝑇, N=  −4[𝑛1, 𝑛2, … , 𝑛𝑛]
𝑇, 

𝑀 = [𝑚1, 𝑚2, … ,𝑚𝑛]
𝑇,  𝑟 = [1,1, . . ,1]𝑇  and  𝑛 is the total 

number of the training data points. The optimum value of 𝑞 

can be determined by calculating the derivative of eq. 55 with 

respect to 𝑞: 

𝜕(𝑞𝑇𝑄𝑞 + 𝑝𝑞 + 𝑓(𝑆) + 𝑁𝑇𝑟)

𝜕𝑞
= 𝑞𝑇𝑄 + 𝑄𝑞 + 𝑝𝑇
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= 0
 𝑄 𝑖𝑠 𝑎 𝑠𝑦𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑎𝑡𝑟𝑖𝑥 
→                     2𝑄𝑞 = −𝑝𝑇     

Now the 𝑞 vector can be written as: 

𝑞 = −
1

2
𝑄†𝑝𝑇                                                                   (56) 

where 𝑄† represents pseudo-inverse of Q and 𝑞 vector can be 

determined by solving eq. 56. By using 𝑞𝑖 = (𝑎2
𝑖 𝑥𝑇𝑥𝑖 + 𝑏), 

ᴦ vector is obtained as: 

𝛤 = [𝑎2
1, 𝑎2

2, … , 𝑎2
𝑖 , … , 𝑎2

𝑙] ∀𝑖 = 1,… , 𝑙                  (57) 

where 𝑙  is the total number of 𝑞 elements and 𝑎2
𝑖  is the 𝑖𝑡ℎ 

element of 𝛤 and 𝑎2
𝑖 =

𝑞𝑖 − 𝑏

 𝑥𝑇𝑥𝑖  
.  

Finally, 𝑎1 is computed by determining the average of all 𝛤  

elements: 

𝑎1 =
1

𝑙
∑ 𝑎2

𝑖𝑙
𝑖=1                                                                (58) 

 

4) PROCEDURE FOR FINDING OPTIMUM VALUE FOR 𝑏 

WHEN 𝑦 =  1 

By replacing 𝑦(𝑥) from eq. 52 into eq. 10 and calculating 

1st and 2nd derivatives of the resulting 𝑒 with respect to 𝑏, 𝑒̇, 

and  ë can be determined. Then by replacing the resulting 𝑒,  

𝑒̇, and  ë into eq. 8 and 9, 𝑆 and 𝑆̇, can be derived, as follows: 

𝑆 = 𝑒̇ + 𝜆𝑒 

𝑆 = [−|𝑦 − 𝑦𝑑|∑2𝛼𝑖𝑦𝑖(𝑎𝑥
𝑇𝑥𝑖 + 𝑏)

𝑛

𝑖=1

] 𝑦(1 + 𝑦)

+
𝜆

2
|𝑦 − 𝑦𝑑|

2 

                                                                                        (59) 

𝑆̇ = 𝑒̈ + 𝜆𝑒̇ = −𝑓(𝑆) 

𝑆̇ = (𝑠𝑖𝑔𝑛(𝑦 − 𝑦𝑑)𝑦
2(1 + 𝑦)2

+ |𝑦 − 𝑦𝑑|[(1 + 𝑦)
2𝑦 + 𝑦2(1

+ 𝑦)]) [∑2𝛼𝑖𝑦𝑖(𝑎𝑥
𝑇𝑥𝑖 + 𝑏)

𝑛

𝑖=1

]

2

− 

|𝑦 − 𝑦𝑑|(1 + 𝑦)𝑦∑2𝛼𝑖𝑦𝑖 − 𝜆|𝑦 − 𝑦𝑑|(1

𝑛

𝑖=1

+ 𝑦)𝑦 [∑2𝛼𝑖𝑦𝑖(𝑎𝑥
𝑇𝑥𝑖 + 𝑏)

𝑛

𝑖=1

] = −𝑓(𝑆) 

                                                                                        (60) 

Assuming 𝑚𝑖 =  2𝛼𝑖  𝑦𝑖  and 𝑞𝑖 =  (𝑎𝑥
𝑇 𝑥𝑖 + 𝑏) and 

replacing 𝑦 =  1 and 𝑦𝑑  =  −1 in eq. 60, eq. 60 can be 

rewritten in a matrix form as follows:  

𝑞𝑇𝑄𝑞 + 𝑝𝑞 + 𝑓(𝑆) − 4𝑀𝑇𝑟 = 0                                    (61) 

where 𝑄 = 16𝑀𝑀𝑇,  𝑝 =  −4𝜆𝑀𝑇,        𝑀 =
[𝑚1, 𝑚2, … ,𝑚𝑛]

𝑇,               𝑟 = [1,1, . . ,1]𝑇  and  𝑛 is the total 

number of the training data points. The optimum value of 𝑞 

can be determined by calculating the derivative of eq. 61 with 

respect to 𝑞: 

𝜕(𝑞𝑇𝑄𝑞 + 𝑝𝑞 + 𝑓(𝑆) − 4𝑀𝑇𝑟)

𝜕𝑞
= 𝑞𝑇𝑄 + 𝑄𝑞 + 𝑝𝑇 

= 0
 𝑄 𝑖𝑠 𝑎 𝑠𝑦𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑎𝑡𝑟𝑖𝑥 
→                     2𝑄𝑞 = −𝑝𝑇     

Now the 𝑞 vector can be written as: 

𝑞 = −
1

2
𝑄†𝑝𝑇                                                                 (62) 

where 𝑄† represents pseudo-inverse of Q and 𝑞 vector can be 

determined by solving eq. 62. By using 𝑞𝑖 = (𝑥
𝑇𝑥𝑖 + 𝑏2

𝑖 ), ᴦ 
vector is obtained as: 

𝛤 = [ 𝑏2
1,  𝑏2

2, … , 𝑏2
𝑖 , … , 𝑏2

𝑙 ] ∀𝑖 = 1,… , 𝑙                  (63) 

where 𝑙  is the total number of 𝑞 elements and 𝑏2
𝑖  is the 𝑖𝑡ℎ 

element of 𝛤 and 𝑏2
𝑖 = 𝑞𝑖 − 𝑥

𝑇 𝑥𝑖 . Finally, the average of all 

𝛤  elements is defined as 𝑏1, as follows: 

𝑏1 =
1

𝑙
∑ 𝑏2

𝑖𝑙
𝑖=1                                                                   (64) 

The procedures 1 to 4 will be used to determine 𝑎1 and 𝑏1 

for all misclassified training data. Finally, 𝑎 and 𝑏  are 

determined by calculating the average of all resulting 𝑎1s and 

𝑏1s, respectively, as follows: 

𝑎 =
1

𝑚
∑ 𝑎1
𝑚
𝑗=1                                                                   (65) 

𝑏 =
1

𝑚
∑ 𝑏1
𝑚
𝑗=1                                                                   (66)                                                               

where 𝑚 is the total number of misclassified training data 

points. The resulting 𝑎 and 𝑏 are used as the 2-degree 

polynomial kernel parameters for the next iteration. 

The above procedure will be continued until the total number 

of iterations is reached or the validation error does not change 

for a pre-defined number of iterations.   

 
II. SIMULATION AND EXPERIMENTAL RESULTS 

    To evaluate the performance of the proposed method, 

experimental results were generated using ten datasets from 

UCI machine learning repository [41] called: Letter 

Recognition (LR) (letters ‘A’ and ‘N’ are used for this 

experiment), Wisconsin Breast Cancer (WBC), Liver 

Disorder (LD), Heberman, Diabetes, Heart disease dataset, 

Ionosphere dataset, Parkinson and Sonar dataset. The letter 

recognition dataset consists of 20000 instances with 17 

attributes for each data point (one label and 16 numerical 

features); Labels consist of 26 English capital alphabets; 

Wisconsin breast cancer database consists of 699 instances 

with 11 attributes for each data point, where benign and 

malignant labels are 2 and 4, respectively; Liver Disorder 

dataset consists of 345 instances with 7 attributes for each data 

point; Heberman dataset generated during study on the 

survival of patients, who had undergone breast cancer surgery; 

this database consists of 304 instances with 3 attributes for 

each of its instances. Parkinson dataset is composed of a range 

of biomedical voice measurements from 31 people, 23 with
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Parkinson's Disease (PD).  Each column in the table is a 

particular voice measure, and each row corresponds one of 

195 voice recording from these individuals ("name" column).  

The main aim of the creation of this database was to be used 

for discriminating healthy people from those with PD. 

Diabetes database has two classes of data and consists of 804 

instances with 8 attributes for each data point. Heart disease 

database consists of 303 instances with 75 attributes for each 

data point. Ionosphere database, which is used for binary 

classification, consists of radar data with 351 instances and 34 

attributes for each data point. Sonar database contains 208 

instances with 60 attributes for each data point. 

 
TABLE I 

DATABASE DESCRIPTION 

Database #Instances #Dimension 

WBC 683 11 
Liver disorder 346 7 

Heberman 306 3 

Diabetes 804 8 
Sonar 208 60 

Heart  303 75 

Ionosphere 351 34 
Parkinson 400 22 

Letter 1536 17 

Iris 150 4 

 

    To generate experimental results, all the databases were 

normalized and then each dataset was randomly divided into 

three subsets called: train, test, and validation subsets of size 

70, 20 and 10 percent, respectively. Training subsets were 

used for updating kernel parameter, validation subsets were 

used for terminating the optimization algorithm [20], as 

mentioned in Section IV and test subset were used for 

evaluation and comparisons of the performance of the 

proposed algorithm. The following setting were used to 

generate results: f(S) = 50 ∗ arctan (S/10) , λ = 0.3 and 

regularization parameter, C = 100.1. The resulting number of 

Support Vectors (SVs) and achieved accuracy for the train and 

test data of the proposed technique using its RBF kernel 

parameter optimization algorithm were calculated and 

compared to those of the anchor SVM and tabulated in Table 

II. From Table II, the proposed technique generates 

significantly higher performance in terms of accuracy and the 

number of SVs than anchor SVM. The proposed method 

generates significantly lower number of Support Vectors 

(SVs) in compared to anchor SVM (up to 93.51% reduction), 

while it gives higher test accuracy. This implies that the 

proposed method is faster than its anchor SVM in its test 

phase. 

To give the reader a sense of the number of iterations that 

proposed algorithm needs to determine its optimal kernel 

parameter, the initial value of γ, the calculated optimal value 

of γ, number of iterations that algorithm used to determine the 

optimal value for γ for ten different databases are tabulated in 

Table III. This table shows that the proposed method arrives 

at the optimum value of γ using small number of iterations. 

The performance of the proposed method using its RBF 

kernel parameter optimization algorithm were compared to 

those of Zhang et al.’s [23] and Liu and Xu’s [30] methods on 

five databases (Parkinson, Ionosphere, Sonar, Heberman and 

Iris databases) are presented in Table IV. From Table IV, it 

can be seen that the propose method gives either superior or 

very competitive results to those of Zhang et al.’s and Liu and 

Xu’s methods. The average γ value that used to generate 

experimental results for the three techniques are also given in 

Table IV. 

The performance of the proposed method using its 2nd-

degree polynomial kernel optimization algorithm were also 

compared to those of Zhang et al.’s [23] and Liu and Xu’s [30] 

techniques on three databases (Iris, Ionosphere, and Heberman 

databases) are presented in Table V. (In [30], Liu and Xu 

presented experimental results of the application of a 2nd order 

polynomial kernel ((𝑎𝑥𝑇𝑥𝑗 + 𝑏)
2
) for SVM classification, 

where 𝑎 and 𝑏 were set to one, on Iris, Ionosphere and 

Heberman databases. Therefore, these three databases were 

used to generate experimental results for the application of the 

proposed method using its 2nd-degree polynomial kernel 

optimization algorithm). From Table V, it can be seen that the 

proposed method outperforms both Zhang et al.’s and Liu and 

Xu’s techniques in terms of accuracy. The average values of 𝑎 

and 𝑏, which were used to generate experimental results for 

the proposed technique are presented in Table V. 

 
III. COUNCLUSIONS 

In this paper, a kernel parameter optimization algorithm for 

support vector machine based on sliding mode control 

algorithm in a closed-loop manner was presented. The 

proposed algorithm introduced an error equation and a sliding 

surface and then iteratively updates the kernel parameter until 

it reaches maximum number of iterations or the training error 

stayed unchanged for a predefined number of iterations. Two 

types of kernels, an RBF or a 2-degree polynomial were 

considered in this paper. Ten publicly available databases 

were used to assess and compare the performance of the 

proposed method with the existing methods. Experimental 

results show the merit of the proposed method in terms of 

accuracy, training and testing speed, total number of the 

support vectors and robustness of the algorithm. 
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TABLE II 

PERFORMANCE OF SVM BASED ON SMC VS. ORIGINAL SVM 

 

Dataset 

 

# Support vectors 

 

Test accuracy 

 

Train accuracy 

 

#Support 
vectors 

reduction 
Original 

SVM 
SVM based 

on SMC 
Original 

SVM 
SVM based 

on SMC 
Original 

SVM 
SVM based 

on SMC 

Liver disorder 

Letter 
Wbc 

Heberman 

Diabetes 
Sonar 

Heart  

Ionosphere 

171 

441 
75 

183 

552 
149 

217 

251 

158 

286 
41 

119 

471 
149 

217 

135 

72.46 

92.23 
99.27 

67.74 

67.53 
85.71 

83.60 

78.87 

73.91 

99.68 
99.27 

72.58 

66.88 
85.71 

91.80 

95.77 

98.79 

97.17 
97.35 

88.12 

64.13 
75.83 

80.18 

85.71 

98.79 

100 
97.14 

78.53 

100 
100 

100 

100 

7.6 

35.14 
45.33 

34.97 

14.67 
0 

0 

53.78 
Parkinson 

Iris 

66 

108 

58 

7 

92.30 

96.66 

94.87 

100 

83.57 

98.14 

97.14 

100 

12.12 

93.51 

 
TABLE III 

THE OPTIMAL VALUE FOR THE Γ PARAMETER OF RBF KERNEL IN THE FINAL ITERATION FOR EACH DATA SET 

Dataset Initial value of value of γ Obtained optimal value of γ #Iteration 

Liver disorder 
Letter 

Wbc 

Heberman 
Diabetes 

Sonar 

Heart  
Ionosphere 

0.5 
0.00001 

0.5 

0.5 
0.00001 

0.00001 

0.00001 
0.00001 

0.4497829048076992 
0.19044796894310853 

0.038161057692307696 

0.017403710412551898 
16.688341317983557 

3.753491664198852 

0.7599354450040051 
0.059792421140318186 

18 
2 

1 

25 
8 

1 

8 
6 

Parkinson 

Iris 

0.00001 

0.00001 

0.0006748792225280603 

0.040178715216006106 

6 

5 

 
TABLE IV 

EXPERIMENTAL RESULTS FOR THE PROPOSED METHOD USING RBF KERNEL OPTIMIZATION, ZHANG ET AL. [23] AND LIU 

AND XU’S [30] METHODS  

 Zhang et al. Liu and Xu Proposed method 

Dataset Test 

Accuracy 
(%) 

 

Optimal γ 
value  

Test 

Accuracy 
(%) 

 

Optimal γ 
value 

Test 

Accuracy 
(%) 

Optimal γ value 

Parkinson 93.51 2.59 93.35 3.61 94.87 0.0006748792225280603 

Ionosphere 93.80 5.82 95.23 3.99 95.77 0.059792421140318186 

Sonar 83.66 18.31 87.31 5.88 85.71 3.753491664198852 
Heberman 

Iris 

71.03 

95.71 

 

1.59 

1.32 

71.37 

95.84 

1.40 

1.51 

72.58 

100 

0.017403710412551898 

0.04017871521600610 

 
TABLE V 

EXPERIMENTAL RESULTS FOR THE PROPOSED METHOD USING A 2ND-DEGREE POLYNOMIAL KERNEL PARAMETERS 

OPTIMIZATION, ZHANG ET AL. [23] AND LIU AND XU’S [30] METHODS  

 Zhang et al. Liu and Xu Proposed method 

Dataset Test 

Accuracy 
(%) 

Test 

Accuracy 
(%) 

Test 

Accuracy 
(%) 

Optimal value of  

a 

Optimal value of  

b 

Iris 96.31 96.67 100 0.2099999999999993 1.7900000000000007 

Ionosphere 92.68 92.74 92.95 0.38999999999999946 1.6100000000000005 
Haberman 69.95 71.06 75.80 -985.4958707589385 -0.4921248264528899 
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