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Abstract: This paper introduces the Chainlet-based Ear Recognition algorithm using Multi-Banding
and Support Vector Machine (CERMB-SVM). The proposed technique splits the gray input image
into several bands based on the intensity of its pixels, similar to a hyperspectral image. It performs
Canny edge detection on each generated normalized band, extracting edges that correspond to the
ear shape in each band. The generated binary edge maps are then combined, creating a single binary
edge map. The resulting edge map is then divided into non-overlapping cells and the Freeman
chain code for each group of connected edges within each cell is determined. A histogram of each
group of contiguous four cells is computed, and the generated histograms are normalized and linked
together to create a chainlet for the input image. The created chainlet histogram vectors of the
images of the dataset are then utilized for the training and testing of a pairwise Support Vector
Machine (SVM). Results obtained using the two benchmark ear image datasets demonstrate that the
suggested CERMB-SVM method generates considerably higher performance in terms of accuracy
than the principal component analysis based techniques. Furthermore, the proposed CERMB-SVM
method yields greater performance in comparison to its anchor chainlet technique and state-of-the-art
learning-based ear recognition techniques.

Keywords: chainlets; multi-band image generation; ear recognition; support vector machine

1. Introduction

Ear recognition is a biometric identification method in which an ear image is utilized
to distinguish a person, which has advanced over the past years. Ears are distinctive
to an individual; even indistinguishable twins’ ear patterns are different [1]. There are
several challenges attached with ear recognition in comparison to face recognition. More
obstruction can be found when dealing with ear images than face images due to coverings
that are sometimes present in such images, e.g., hair and jewelry. Additionally, there is
currently a limited number of ear image datasets available. These datasets usually contain a
small number of images. A typical ear recognition technique consists of a feature extractor
and a classification method. Some of the existing feature extraction algorithms for ear
recognition are Principal Component Analysis (PCA) [2–6], Curvelet-based [7], wavelet-
based [8], local oriented patterns based [9] and neural-network-based techniques [10–13].
Over the years, researchers have proposed several machine-learning-based approaches and
statistical methods for ear recognition. Some of these methods include: ‘Eigenfaces’ [6],
wavelet [8], SVM [14,15] and deep learning [12] based techniques for feature extraction
and classification. Both learning and statistical-based algorithms have been successfully
used for ear recognition; however, more accurate results are often obtained using the
learning-based techniques due to the ‘width’ of the data. Promising results have been
noticed with recently reported statistical-based algorithms, e.g., chainlets [16] and 2D-
MBPCA [17]. High-performing ear recognition techniques use a mixture of statistical-based
feature extraction methods along with a learning-based classification algorithm [2]. This has
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inspired the authors to investigate a new combination of multi-band image processing with
chainlets and a learning-based classifier. Application of the multi-band image processing
for ear recognition on non-decimated wavelet subbands of ear images utilizing Principal
Component Analysis (PCA) shows the effectiveness of multi-band image processing in
recognition. In [18], the authors showed that the intersection of the number of feature
graphs and the Eigenvector energy defines the optimum number of bands for recognition,
where increasing the number of multi-band images changes the distribution of the energy
across image Eigenvectors, and consolidates most of the image Eigenvectors’ energy into a
smaller number of Eigenvectors. The result of this was an increased accuracy in recognition.
In [16], the authors introduced chainlets as an efficient feature descriptor for encoding the
shapes formed by the edges of an object, where the connections and orientations of the edges
are more invariant to translation and rotation. They have successfully applied their method
to ear recognition and reported promising results; however, to the authors’ knowledge, the
application of multi-band image processing along with chainlets for ear recognition has
not been informed in the literature. This has motivated the authors to investigate a new
combination of multi-band image processing with chainlets and a learning-based classifier
for ear recognition.

This paper presents a Chainlet-based Multi-Band Ear Recognition method using
Support Vector Machine (CERMB-SVM). The suggested algorithm splits the input ear
image into a few image bands based on the image pixel intensity. More ear features can
be extracted using the created image bands rather than just the input image. The Canny
edge detection is performed on each generated image band, generating a binary image
representing its edges. To remove isolated edges, connect adjacent left edges and discard
inappropriate edges within each resulting binary image, morphological operators are
employed. The generated edge bands are then compacted into one binary edge map. The
generated binary edge map is divided into several cells using a windowing algorithm
and the Freeman chain code for each edge group within each cell is determined. The cells
are then categorized into overlapping blocks and a histogram is then computed from the
chain codes for each block. These histograms are then normalized and linked together to
create the normalized chainlet histogram vector for the input image. A pairwise support
vector machine is then trained and utilized to perform ear recognition. The IITD II [19] and
USTB I [20] ear image datasets were used to generate experimental results. Results show
that the suggested CERMB-SVM method surpasses both the statistical and state-of-the-art
learning-based ear recognition techniques. The rest of the paper is structured as follows:
Section 2 presents the proposed CERMB-SVM algorithm, Section 3 discusses the pairwise
support vector machine classifier, Section 4 presents the experimental results, and Section 5
concludes the paper.

2. Proposed CERMB-SVM Technique

A block diagram of the Chainlet-based Ear Recognition algorithm using Multi-Banding
and Support Vector Machine (CERMB-SVM) is shown in Figure 1. This figure shows that
the proposed algorithm contains five main stages: image pre-processing; multi-band image
generation; binary edge image creation; chainlet calculation; classification.

2.1. Image Pre-Processing

Assume that E is the set of all ear images in the ear image dataset. Assuming that the
input image e ∈ E is an unsigned 8-bit, grayscale image. The proposed technique performs
a histogram equalization on the input image to improving its contrast. This is achieved by
computing the Probability Mass Function (PMF) PX of the input image.

PX(xk) = P(X = xk) for k = 0, 1, · · · , 255 (1)

where x0, x1, · · · , x255 indicates the pixel values and PX(xk) indicates the probability of
pixel value in bin k. The Cumulative Distribution Function (CDF) CX of the image is then
computed using the calculated PDF:
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CX(k) = P(X ≤ xk) for k = 0, 1, · · · , 255 (2)

where CX(k) indicates the cumulative probability of X ≤ xk. Finally, each pixel value inside
the image is converted to a new value utilizing its computed CDF, creating a histogram
equalized image.
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Figure 1. Chainlet-based Multi-Band SVM (CERMB-SVM) ear recognition algorithm.

2.2. Multi-Band Image Generation

The proposed CERMB-SVM algorithm divides the resulting histogram equalized
image into several bands based on its pixel values. Assume N be the number of aim bands
for the input image e to be split into. The pixel value borders B = {b1, b2, · · · , bN−1} are
then determined utilizing (3):
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bn = n/N for n = 1, 2, · · · , (N − 1) (3)

The histogram equalized image has now been divided into F image bands, creating a
multi-band image F = { f1, f2, · · · , fN}.

2.3. Edge Selection

Input image edge selection process is as follows: the proposed algorithm first performs
Canny edge detection to each resulting intensity band f ∈ F. A Gaussian filter with sigma
0.5 is applied on each resulting intensity band to smoothing the band. Then, the intensity
gradient of the created band is computed in four directions (0◦, 45◦, 90◦ and 135◦) utilizing
a first-order derivative function. The horizontal and vertical edge gradients are first
determined and employed to calculate the gradients of the diagonals. The non-maximum
suppression algorithm is then performed on the resultant gradients to maintain the edges
with the greatest gradients. The leftover edge pixels are then exposed to two empirical
thresholds, low and high. Pixels lower than the low threshold value are discarded, pixels
with value greater than the high threshold are categorized as strong edges, and pixels in
the middle of the two thresholds are believed to be weak edges. Ultimately, the resultant
edges are exposed to edge tracing by hysteresis, in which a weak-edge pixel is discarded
if none of its 8-connected neighborhood pixels are strong-edge pixels. The resulting edge
maps are then binarized, generating a binary edge map g ∈ G for each band.

Each resultant binary edge map g ∈G is then exposed to two morphological operations.
First, single edges are set to zero. Second, a ‘bridge’ morphological operator is performed
on the resultant edge map. If a zero-value pixel has two or more non-zero neighbors, its
value is set to one, by this means decreasing the quantity of distinct contours in the binary
image map. The resultant contours in the maps more precisely demonstrate the ear features
of the input image.

One side-impact of applying edge detection on each band is that multi-band image
generation may generate extra edges, as pixels with values just above and under the given
boundary values are often contiguous; therefore, those pixels are inaccurately categorized as
edges. To solve this problem, these pixels are assessed with their 8-connected neighborhood.
If any of the neighbors has a value of zero, the edge is believed to be generated by multi-
band image creation and is then removed. After all redundant edges have been eliminated,
the binary image bands g ∈ G are mixed, creating the ultimate binary edge image.

2.4. Chainlet Calculation

A block diagram of the chainlet computation procedure is shown in Figure 2. Chainlets
are based on the Freeman chain code of eight directions, where the chain code is normally
used to create a vector demonstrating the edge contour. The direction from an edge pixel
is shown by a one in the binary edge map, to each of its possible eight edge neighbors is
assigned a value between zero and seven as demonstrated in Figure 3a.

To compute the chain codes, the resultant combined input binary edge map is split
into non-overlapping cells of size 8 × 8 pixels. For each edge contour in each cell, the
Freeman chain code is determined starting from that edge-contour’s upper leftmost pixel
and pass-through counter-clockwise as displayed in Figure 3b. For the shown edge-contour,
the chain code is [0 0 0 7 7 7 6 6 2 2 3 3 3 4 4]. The resultant cell chain codes are categorized
into overlapping blocks of size 2 × 2 cells with a stride of 1 cell. For each block’s resultant
chain codes, a histogram is created, which is normalized utilizing the L2 norm. The
resultant normalized histograms of all blocks are linked together row by row generating a
normalized chainlet histogram vector.
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Figure 2. Chainlet code calculation process.
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Figure 3. The Freeman Chain Code of eight directions and a traversed edge, generating the chain
code [0 0 0 7 7 7 6 6 2 2 3 3 3 4 4]. (a) Freeman Chain Code. (b) Edge Traversion.
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3. Pairwise Support Vector Machine

Although various categorization algorithms can be used, in this research, a pairwise
Support Vector Machine (SVM) is utilized for its simplicity. Pairwise SVM takes two inputs
and defines if they are from the same class, whereas standard SVM takes only one input
and seeks to determine its class. Assume R = {H1

1 , · · · , H j
i , · · · , HM

N } be a training set of

chainlets where H j
i links to the j-th training image of the i-th person. The pairwise decision

function between H j
i and the inquiry chainlet Hq

p can then be written as:

D(H j
i , Hq

p) = ∑
(m,n)

αmnymnK((Hm, Hn), (H j
i , Hq

p)) + γ (4)

where α and K represent the learned weights and the kernel function, respectively, and γ
indicates the learned bias, and:

ymn =

{
+1, m = n
−1, m 6= n

(5)

In this paper, the kernel K represents the direct sum pairwise kernel, i.e.,

K((a, b), (c, d)) := k(a, c) + k(b, d) (6)

where k indicates a standard kernel; in this instance, the linear kernel:

k(a, c) = aTc (7)

In this paper, the parameters alpha and gamma were learned as explained in [21].
Moreover, the first two ear images of each subject in the dataset were employed for training
the algorithm and the rest of its images were utilized for testing the algorithm.

4. Experimental Results

Two standard benchmark ear image datasets named the Indian Institute of Technology
Delhi II (IITD II) [19] and the University of Science and Technology Beijing I (USTB I) [20],
which are widely used in the literature [8,14,15,17,22], were used to create experimental
results. These datasets were chosen since their images are aligned and also, they have
extensively used in recent journal and conference papers. The IITD II dataset contains
793 images of the right ear of 221 people, where there are three to six images for each
person’s ear and the images are unsigned 8-bit grayscale of size 180 × 50 pixels. All the
images of IITD II dataset have the same size and are centered and aligned manually. The
USTB I dataset contains 180 unsigned 8-bit grayscale of size 150× 80 images of the right ear
of 60 people (three images per person). The images in USTB I are tightly cropped; however,
they demonstrate some minor rotation and shearing. Example images from both datasets
are shown in Figure 4.

The suggested CERMB-SVM algorithm was applied to images of the IITD II and
USTB I datasets utilizing two to ten bands of constant size as detailed in Section 2.2. The
number of accurate matches was computed for each set of bands. A subgroup of the
results for both the IITD II and USTB I image datasets are presented in Tables 1 and 2
respectively. From these tables, it is clear that the proposed technique attains its highest
performance at four and seven bands when dealing with the images of the IITD II and USTB
I datasets, respectively. From these tables, it can be observed that the proposed CERMB-
SVM technique has marginally superior performance when dealing with the images of the
IITD II dataset than the images of the USTB I dataset.



Appl. Sci. 2022, 12, 2033 7 of 14

Figure 4. Two example images of unique persons from the IITD II dataset (a,b) [19]. Two example
images of two unique persons from the USTB I dataset (c,d) [20].

Table 1. Experimental results for the suggested Chainlet-based Multi-Band Ear Recognition using
Support Vector Machine (CERMB-SVM) ear recognition algorithms on the IITD II [19] dataset.

Number of Bands Rank-1 Rank-5

2 97.79 99.85
3 98.44 100.00
4 99.02 100.00
5 98.25 100.00
6 96.94 99.63

Table 2. Experimental results for the suggested Chainlet-based Multi-Band Ear Recognition using
Support Vector Machine (CERMB-SVM) ear recognition algorithm on the USTB I [20] dataset.

Number of Bands Rank-1 Rank-5

5 99.17 100.00
6 99.17 100.00
7 99.44 100.00
8 99.44 100.00
9 98.89 100.00

To assess and compare the effectiveness of the suggested CERMB-SVM algorithm
with the statistical PCA and anchor chainlet, and state-of-the-art learning based meth-
ods, the Rank-1 experimental results of the suggested CERMB-SVM, single image PCA,
‘Eigenfaces’ [4], 2D-MBPCA [17], ‘BSIF and SVM’ [15], GoogLeNet [11], ‘ResNet18 and
SVM’ [12], VGG-based Ensembles [23] and ‘neural network and SVM’ based [14] methods
are presented in Table 3. From this table, the presented CERMB-SVM method meaningfully
outperforms both the PCA-based and learning based state-of-the-art algorithms for the
images of the IITD II dataset. Additionally, the proposed CERMB-SVM method consider-
ably outperforms the PCA-based methods and slightly outperforms the learning-based
algorithms on the USTB I dataset.
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Table 3. Experimental results for the suggested Chainlet-based Multi-Band Ear Recognition
using Support Vector Machine (CERMB-SVM) ear recognition algorithm on IITD II [19] and
USTB I [20] datasets.

Algorithm
Dataset

IITD II USTB I

Statistical based Techniques

Single Image PCA 36.35 45.00
Eigenfaces [4] 89.78 75.93

2D-MBPCA [17] 91.12 85.19
Chainlets [16] 98.54 99.02

Learning based Techniques

BSIF and SVM [15] 97.31 -

GoogLeNet [11] 98.57 99.36
ResNet18 and SVM [12] 98.76 99.44

VGG-based Ensembles [23] 98.88 99.24
Neural Network and SVM [14] - 98.30

Proposed CERMB-SVM Technique 99.02 99.44

A further comparison between the proposed 2D-CERMB-SVM technique and the afore-
mentioned algorithms is demonstrated using Cumulative Match Curves (CMC). Regions of
interest for the CMC curves comparing 2D-CERMB-SVM to the statistical based methods
on the IITD II and USTB I datasets are shown in Figures 5 and 6, respectively. In addition,
regions of interest for the CMC curves for both the proposed 2D-CERMB-SVM and learning
based techniques on both datasets are shown in Figures 7 and 8. From Figures 5 and 6, it can
be seen that the proposed 2D-CERMB-SVM algorithm greatly outperforms the PCA-based
methods. In addition, the proposed technique generates superior results to its anchor
chainlet method. From Figures 7 and 8, it is evident that the 2D-CERMB-SVM algorithm
generates superior results to the ‘BSIF and SVM’, GoogLeNet, VGG-based Ensembles, and
‘Neural Network and SVM’ methods; however, the proposed technique generates identical
results to that of the ‘ResNet18 and SVM’ method on the USTB I dataset.

4.1. Justification of the Achieved Performance

From the experimental results, it is evident that the proposed CERMB-SVM technique
considerably outperforms the PCA-based methods. This performance can be justified by the
fact that the multiple band image generation process expands the ear image feature space by
a factor of b− 1, where b is the number of frames; however, due to flattening of the resulting
edge maps of different bands, some edges will overlap, resulting in a slight reduction in
the increased feature space. To give the reader a visualized justification of the selection of
optimum number of bands, the average of the total eigenvector energy for the resulting edge
maps for different bands are calculated to represent the effectiveness of the resulting features
generated by the multi-banding process. In addition, the average number of features for
different number of bands is also plotted on the same graph. These two calculations can be
seen in Figures 9 and 10 for the IITD II and USTB I datasets, respectively.

From these figures, it can be seen that the total eigenvector energy for the resulting
edge maps decreases as the number of bands increases. At the same time, the average
number of features post-flattening increases with the number of the bands in a slightly
less than linear fashion due to edge overlap in the flattening process. The intersection of
these two graphs represents the optimal number of frames that can be used to produce the
highest matching performance. The intersection of the eigenvector energy and number
of features graphs occurs at approximately four bands for the IITD II dataset and seven
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bands for the USTB I dataset. This is consistent with the experimental results for finding
the optimal number of bands in Section 4.

Figure 5. Region of interest of the CMC curves for Single Image PCA (purple), eigenfaces (orange),
2D-MBPCA (red), chainlets (green) and 2D-CERMB-SVM (blue) for the IITD II dataset [19].

Figure 6. Region of interest of the CMC curves for single image PCA (purple), eigenfaces (orange),
2D-MBPCA (red), chainlets (green) and 2D-CERMB-SVM (blue) for the USTB I dataset [20].
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Figure 7. Region of interest of the CMC curves for ‘BSIF and SVM’ (purple), GoogLeNet (green),
‘ResNet18 and SVM’ (orange), VGG-based ensembles (red) and 2D-CERMB-SVM (blue) for the IITD
II dataset [19].

Figure 8. Region of interest of the CMC curves for ‘neural network and SVM’ (purple), GoogLeNet
(green), VGG-based ensembles (red) and 2D-CERMB-SVM (blue) for the USTB I dataset [20]. The
‘ResNet18 and SVM’ method produced identical results to 2D-CERMB-SVM.

4.2. Execution Time

Ear recognition methods can normally be categorized into two main groups: statistical-
based and learning-based algorithms. Statistical-based methods, comprising PCA, eigen-
faces, 2D-MBPCA and the anchor chainlet technique, extract some statistics or features
directly from the image and use these features to find the best match, whereas learning-
based methods employ a range of information comprising image statistics, features and
other data extracted from the image dataset to train classifiers, e.g., neural networks and
support vector machines such as the proposed CERMB-SVM method. Learning-based
techniques then use the trained classifiers to find the best match for an input query image.
Subsequently, learning-based ear recognition methods are considerably more computation-
ally costly than their statistical-based counterparts.
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Figure 9. The number of features and total eigenvector energy against the number of frames, where
the intersection shows the number of frames for maximum attainable performance, for the IITD II
dataset [19].

Figure 10. The number of features and total eigenvector energy versus the number of frames, where
the intersection reveals the number of frames for maximum attainable performance, for the USTB I
dataset [20].
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To give the reader a sense of the computational complexity of the proposed CERMB-
SVM algorithm with respect to statistical based algorithms and the state-of-the-art learning-
based methods, Single Image PCA, eigenfaces [4], 2D-MBPCA [17], the anchor chainlet,
‘BSIF and SVM’ [15], GoogLeNet [11], ‘ResNet18 and SVM’ [12], VGG-based Ensembles [23],
‘neural network and SVM’ based [14] and the proposed CERMB-SVM methods were
implemented in MATLAB. The resulting techniques were then executed on a Windows 10
personal computer equipped with a 7th generation Intel core i7 processor, an NVIDIA GTX
1080 graphics card and a 512 GB Toshiba NVMe solid-state drive (no other applications,
updates or background programs were running during the computation). The average
computation time for processing an query image using each technique (learning-based
algorithms were previously trained and their training time has not been contained in their
measurement) was calculated using 100 randomly chosen query images from each dataset.
The resulting measurements are presented in Table 4.

Table 4. Average execution time (milliseconds) of the suggested CERMB-SVM and the state-of-the-art
PCA-based and learning-based methods.

Algorithm
Dataset

IITD II USTB I

PCA-based Techniques

Single Image PCA 13.55 12.16
Eigenfaces [4] 3.10 1.82

2D-MBPCA [17] 13.64 13.07

Learning based Techniques

BSIF and SVM [15] 23.57 -
GoogLeNet [11] 22.88 21.59

ResNet18 and SVM [12] 24.24 23.88
VGG-based Ensembles [23] 23.51 22.79

Neural Network and SVM [14] - 22.78

Proposed CERMB-SVM Technique 22.21 21.85

5. Conclusions

In this paper, application of multi-band image processing together with chainlets and
support vector machine for ear recognition was investigated. This resulted in development
of a Chainlet-based Ear Recognition Algorithm using Multi-Banding and Support Vector
Machine (CERMB-SVM) algorithm, which significantly outperforms the statistical based ear
recognition techniques and gives superior results to those of the learning-based methods
in terms of accuracy. The proposed CERMB-SVM method splits the input ear image
into several bands based on the intensity of its pixels. Canny edge detection algorithm
along with morphological operators were used to generate and select the edge map for
each resulting bands. One binary edge map image was created by combining the edge
maps of different image bands. This resulting single binary edge map was divided into
cells. The Freeman chain code for each cell was then calculated. The resulting cells are
then clustered into overlapping blocks, and a histogram for each block is computed. The
resulting histograms are normalized and linked together to create a normalized chainlet
histogram vector for the original input image. The normalized chainlet histogram vectors
of the images of the dataset are considered as features for matching using pairwise SVM.

Experimental results show that the proposed CERMB-SVM technique significantly
outperforms the statistical-based techniques, in terms of accuracy. The proposed CERMB-
SVM technique generates 62.67%, 9.24%, 7.90% and 0.48% higher than single image PCA,
Eigenfaces, 2D-MBPCA and anchor chainlet in terms of accuracy on images of IITD II
dataset, respectively. The proposed algorithm produces 54.44%, 23.51%, 14.25% and 0.42%
higher accuracy than single image PCA, Eigenfaces, 2D-MBPCA and anchor chainlet
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technique on images of USTM I dataset, respectively. Experimental results show that the
proposed CERMB-SVM technique generates superior or the same performance in terms
of accuracy than those of learning-based methods. It generates 1.71%, 0.45%, 0.26% and
0.14% higher accuracy on images of IITD II datasets compared to those of “BSIF and
SVM”, ”GoogLeNet2”, “ResNet18 and SVM” and “Neural Network and SVM” techniques,
respectively. Moreover, the proposed technique produces 0.08%, 0.2%, 1.14% greater
accuracy on images of USTM I dataset than those of “GoogLeNet”, “VGG-based Ensembles”
and “Neural Network and SVM” methods, respectively. The proposed algorithm generates
similar results to “ResNet18 and SVM” method.

The proposed CERMB-SVM algorithm can be applied to different applications includ-
ing iris and drone recognition. The MATLAB implementation of the algorithm indicates that
the proposed algorithm generates competitive results compared to those of learning-based
algorithms at a portion of their computation cost; however, the real-time implementation
of the proposed algorithm on DSP or FPGA can be considered as the future work for
this research.
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