
Citation:
Jamil, MN and Kor, A-L (2022) Analyzing energy consumption of nature-inspired optimization
algorithms. Green Technology, Resilience, and Sustainability, 2 (1). ISSN 2731-3425 DOI:
https://doi.org/10.1007/s44173-021-00001-9

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/8537/

Document Version:
Article (Published Version)

Creative Commons: Attribution 4.0

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/8537/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

Green Technology, Resilience,
and Sustainability

Jamil and Kor Green Technology, Resilience, and Sustainability (2022) 2:1
https://doi.org/10.1007/s44173-021-00001-9

ORIGINAL RESEARCH Open Access

Analyzing energy consumption of
nature-inspired optimization algorithms
Mohammad Newaj Jamil and Ah-Lian Kor*

Abstract

Nature-Inspired Optimization (NIO) algorithms have become prevalent to address a variety of optimization problems
in real-world applications because of their simplicity, flexibility, and effectiveness. Some application areas of NIO
algorithms are telecommunications, image processing, engineering design, vehicle routing, etc. This study presents a
critical analysis of energy consumption and their corresponding carbon footprint for four popular NIO algorithms.
Microsoft Joulemeter is employed for measuring the energy consumption during the runtime of each algorithm,
while the corresponding carbon footprint of each algorithm is calculated based on the UK DEFRA guide. The results of
this study evidence that each algorithm demonstrates different energy consumption behaviors to achieve the same
goal. In addition, a one-way Analysis of Variance (ANOVA) test is conducted, which shows that the average energy
consumption of each algorithm is significantly different from each other. This study will help guide software engineers
and practitioners in their selection of an energy-efficient NIO algorithm. As for future work, more NIO algorithms and
their variants can be considered for energy consumption analysis to identify the greenest NIO algorithms amongst
them all. In addition, future work can also be considered to ascertain possible relationships between NIO algorithms
and the energy usage of hardware resources of different CPU architectures.

Keywords: Nature-inspired optimization algorithms, Energy consumption, Carbon footprint, Environmental impact,
Green software, Microsoft Joulemeter, UK, DEFRA

1 Introduction
Optimization is a commonly encountered mathemati-
cal problem in many disciplines such as engineering,
business activities, industrial designs, etc. Many real-
world applications in science and engineering encom-
pass various forms of optimization such as: minimizing
energy consumption, cost or maximizing performance
and efficiency. Traditional optimization algorithms for
real-world problems are predominantly highly nonlinear
with large numbers of local optima accompanied with a
set of complex nonlinear constraints [1]. On the other
hand, nature-Inspired Optimization (NIO) algorithms are
population-based metaheuristics that mimic diverse phe-
nomena in nature [2]. They circumvent local optima more

*Correspondence: A.Kor@leedsbeckett.ac.uk
School of Built Environment, Engineering and Computing, Leeds Beckett
University, Leeds LS1 3HE, UK

successfully in contrast to traditional optimization algo-
rithms. Therefore, they are widely used for solving highly
nonlinear real-world optimization problems in various
fields such as manufacturing, environmental engineering,
finance, biomedical, etc.
Due to the proliferation of mobile and IoT devices, soft-

ware energy consumption should be taken into account
during the design of applications for high-performance
and mobile computing systems. Software applications
could be made more energy-efficient and environment-
friendly by means of their optimized algorithms and data
structures. In the past decades, an algorithm’s perfor-
mance was evaluated based on runtime, and by default,
it was the only performance metric that was considered
for the analysis and optimization for an algorithm [3].
However, in recent years, the extensive growth of high-
performance computers and embedded systems with

© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1007/s44173-021-00001-9&domain=pdf
http://orcid.org/0000-0002-1916-3147
http://orcid.org/0000-0001-9514-3773
mailto: A.Kor@leedsbeckett.ac.uk
http://creativecommons.org/licenses/by/4.0/

Jamil and Kor Green Technology, Resilience, and Sustainability (2022) 2:1 Page 2 of 12

faster processors have resulted in increased energy con-
sumption. Therefore, the energy usage of an algorithm
is a crucial element that needs to be factored in for the
evaluation of an algorithm (i.e. in terms of performance
and sustainability). The effectiveness and efficiency of an
algorithm need to be assessed in the context of a target
application because its deployment would have an impact
on energy consumption and environmental impact.
Carbon footprint is one way to assess the environmen-

tal impacts of ICT. Companies can make the software
an integral part of their sustainability efforts by assess-
ing its energy efficiency level, associated carbon footprint
and deploying it to green business operations or processes
[4]. Over the past few years, the deployment of Machine
Learning (ML) models has grown exponentially in size
[5]. The associated energy consumption and cost involved
for training as well as building ML models has become a
growing concern [6]. It is found that designing and train-
ing translation engines in Natural Language Processing
(NLP) can emit between 0.6 and 280 tonnes of CO2 [7].
Hence, an algorithm’s carbon footprint needs to be appro-
priately addressed during its design, implementation, and
deployment.
Currently, there are more than a hundred existing NIO

algorithms and their variants in literature [2]. However,
this study aims to analyze energy consumption and cor-
responding carbon footprint for four widely used NIO
algorithms, namely Genetic Algorithm (GA), Particle
Swarm Optimization (PSO), Differential Evolution (DE),
and Artificial Bee Colony (ABC) algorithm. These four
algorithms have been considered in this study due to
their wide ranging application areas. This research aims to
demonstrate how the energy consumption of these algo-
rithms could be empirically assessed. Note that other NIO
algorithms could be addressed in future work.
Genetic Algorithm (GA) evolves from the Darwinian

evolution of biological systems, where the main charac-
teristics are three genetic operators, namely crossover,
mutation, and selection [8]. It has been applied to solve
complex problems such as computer-automated design
[9], power electronics design [10], gene expression profil-
ing analysis [11], bioinformatics multiple sequence align-
ment [12], facility layout problem [13, 14], etc. However,
a limitation of GA is its premature convergence that can
lead to the loss of alleles, which makes it difficult to
identify a gene [15].
Particle Swarm Optimization (PSO) is derived from the

swarm intelligence of flocking of birds and schooling of
fishes in search of food, where each particle contains its
own velocity and position [16]. It has been used to address
several problems such as software cost estimation [17],
human motion tracking [18], resource allocation in the
cloud [19], assembly line balancing [20], data clustering
[21], etc. However, a limitation of PSO is it easily falls into

local optimum in high-dimensional space and has a low
convergence rate in the iterative process [22].
Differential Evolution (DE) is formulated on the vector

population evolution, where new individuals are gener-
ated by differential crossover andmutation operators [23].
It has been used in tackling many different problems
such as electromagnetic inverse scattering problems [24],
electromagnetic imaging [25], antenna array design [26],
robot motion planning and navigation [27], etc. However,
a limitation of DE is its unstable convergence, and it easily
falls into regional optimum [28].
Artificial Bee Colony (ABC) algorithm is elicited from

the food searching behavior of honey bee swarm, where
the swarm comprises three components, namely food
source, employee foragers, and unemployed foragers [29].
It has been applied to solve a number of problems such as
economic dispatch problem [30], traveling salesman prob-
lem [31], mobile robot path planning [32], load balancing
in the cloud [33], image segmentation [34], etc. However,
a limitation of the ABC algorithm is it converges slowly in
the process of searching and easily suffers from premature
convergence [35].
A set of objectives to support the aim of this study is as

follows:

• Conduct a critical literature review on the
environmental impact of ICT, green or energy-
efficient software, the impact of hardware energy
consumption by software, and the analysis of energy
consumption in algorithms implementations as well
as nature-inspired algorithms and energy efficiency.

• Implement the four NIO algorithms using MATLAB
and conduct a set of experiments for measuring the
energy consumption of these algorithms by utilizing a
commonly used benchmark function, named Sphere
Function.

• Estimate the equivalent carbon footprint of each
algorithm based on the amount of energy consumed
by each algorithm.

• Investigate whether the average energy consumption
of these four algorithms is significantly different or
not by performing a one-way ANOVA (Analysis of
Variance) test.

Several existing work has conducted a comparative anal-
ysis of the energy consumption of different programming
languages [36–38] and sorting algorithms implementa-
tions [39–42]. To date, in existing literature, energy con-
sumption and carbon footprint of NIO algorithms have
not been analyzed to the best of our knowledge.
Hence, the novel contribution of this study is to analyze

the energy impact of NIO algorithms during execution in
MATLAB by conducting experiments with a benchmark
function. The limitation of this research is that only four
types of NIO algorithms have been investigated. However,

Jamil and Kor Green Technology, Resilience, and Sustainability (2022) 2:1 Page 3 of 12

the energy consumption-related experiment procedures
could be replicated for all other non-listed NIO algo-
rithms. In addition, the equivalent carbon footprint of
each algorithm has been estimated based on their energy
consumption, and an ANOVA test has been conducted to
test the significant difference in the average energy con-
sumption among these algorithms. This study will help
developers choose the greenest NIO algorithm to solve
a particular domain problem when energy consumption
minimization is the top priority.
The remainder of this article is organized as follows:

a literature review on the environmental impact of ICT,
green or energy-efficient software, the influence of hard-
ware energy consumption by software, and related works
on the analysis of energy consumption in algorithms
implementations as well as nature-inspired algorithms
and energy efficiency is presented in Section 2. Section 3
provides a brief overview of methodologies, which include
both macro and micro methodology as well as experiment
setup and design. Findings and discussion are presented in
Section 4, which discusses energy consumption and corre-
sponding carbon footprint of each algorithm, the ANOVA
test, and ethical issues and challenges of this study. A sum-
mary of the discussion and recommendations for future
studies is presented in Section 5.

2 Literature review
2.1 Environmental impact of ICT
The ICT sector is accountable for two percent of global
carbon emissions, while the rest of the sectors, for exam-
ple, health, transportation, education, etc., are responsible
for the remaining 98% of carbon emissions [43]. The
increase of carbon emissions due to GreenHouse Gases
(GHGs) and other factors will have a negative impact
on the environment as well as the economy [44]. Due
to the increasing global demand for ICT products and
services, the ICT sector can play a crucial role in reduc-
ing global carbon emissions by minimizing the carbon
footprints of its products and services. Though a lot
of research has been undertaken for making hardware
and other embedded systems energy-efficient [45–48], a
similar focus needs to be given to the development of
energy-efficient software and applications [49, 50].

2.2 Energy-efficient software
A piece of software is labeled as green or energy-efficient
when it consumes less energy for its efficient computation
that results in minimal adverse effects on environment
[51]. Several research work has been conducted on the
investigation of energy efficiency of web-based software
application [52] and software features [53]. The direct
impact of software on a laptop or mobile battery can eas-
ily be measured as approximately 25% to 40% of the total
energy consumed by a device [54]. However, the indirect

impact of software is comparatively harder to assess as
they are related to the life cycle of the host device [55].
An energy-efficient or green software can be achieved
when its positive and negative impacts are duly consid-
ered during the design as well as deployment phase. In
view of this, optimization of ICT application services is
highly necessary to lessen unpropitious effects on the
environment.

2.3 Impact of hardware-Related energy consumption by
software

The hardware-related energy consumption behavior of
software has a direct influence on the energy consumed
by hardware as well as the battery life of a device [56]. A
poorly designed software or application can nullify sev-
eral energy-efficient features embedded into the hardware
that may eventually increase the energy consumption of a
device [57]. For example, it can inhibit energy-saving fea-
tures of hardware as well as affect hardware utilization,
which may ultimately increase indirect energy consump-
tion [58]. One of the most challenging tasks during the
design phase of an embedded system is the development
of energy-efficient software that makes a piece of hard-
waremore energy-efficient as well. Therefore, some trade-
offs between performance and sustainability will have to
be considered so that software and applications can be
made more productive yet energy-efficient [59].

2.4 Analysis of energy consumption in algorithms
implementations

In existing literature, there is relatively little work that
provides insights into algorithm implementation-related
energy consumption. Rashid and colleagues have ana-
lyzed the energy efficiency of four sorting algorithms,
namely Bubble, Merge, Quick, and Counting sort [39]. In
this study, an experiment was set up on an ARM-based
device, and the energy consumption of four sorting algo-
rithms implemented in three programming languages was
measured. This study found that the ARM assembly lan-
guage implementation of Counting sort was the greenest
solution.
Measurement of the energy consumption for five sort-

ing algorithms, namely Bubble, Insertion, Quick, Selec-
tion, and Counting sort, has been conducted in [40]. In
this study, five different Apps were developed for each
sorting algorithm to measure energy consumption. This
study found that Quick sort is the most energy-efficient
sorting method in average cases, while Bubble sort is the
most energy-consuming algorithm.
Deepthi and colleagues have conducted experiments to

study how different sorting algorithms have an impact
on energy consumption using C language implementation
[41]. This study found that both time and energy have an
impact on the efficiency of these sorting algorithms. This

Jamil and Kor Green Technology, Resilience, and Sustainability (2022) 2:1 Page 4 of 12

study considered six sorting algorithms, namely Quick,
Merge, Shell, Insertion, Selection, and Bubble sort. It has
been found that the energy consumption of Quick, Merge,
and Shell sort is similar while Insertion and Selection sorts
are far better than Bubble sort.
Ayodele and colleagues have carried out a compara-

tive experimental analysis of the energy consumption of
Quick, Merge, and Insertion sort algorithms using three
programming languages (C, Java, and Python) and two
algorithm implementation styles (Iterative and Recursive)
[42]. This study found that data size, the programming
language used, and algorithm implementation styles affect
the total energy consumption. Besides, this study pro-
vides information for choosing sorting algorithm type and
its algorithm implementation style in order to minimize
energy consumption.
Though several existing research related to energy con-

sumption analysis of different sorting algorithms imple-
mentations have been performed, the energy consump-
tion of NIO algorithms has not been analyzed till now
to the best of our knowledge. Therefore, the initial moti-
vation and primary focus of this study is to analyze the
energy consumption of four NIO algorithms based on a
benchmark function.

2.5 Nature-inspired algorithms and energy efficiency
Existing nature-inspired algorithms research primarily
addresses the following areas of research: optimization
[1, 2, 60, 61] using metaheuristics [62] or heuristics [63]
approaches; greening processes, for example greening the
supply chain [64], smart energy management [65], data
center energy efficiency [66]; energy efficiency [67] and
energy optimization [68] in wireless sensor network clus-
tering. Our critical literature review has shown that to

date, there is no research on energy efficient nature-
inspired algorithms and thus, our research aims to address
this identified gap.

3 Methodology
3.1 Macro methodology
In this study, an LCA (Life Cycle Assessment) method-
ology for ICT GNS (Goods, Networks, and Services)
[69] has been considered as the macro methodology. It
is a systematic analytical method to assess the poten-
tial environmental effects of ICT GNS in a consistent
and transparent manner. It has a cradle-to-grave scope
that comprises four life cycle stages, namely Raw Mate-
rial Acquisition (RMA), Production, Use, and End-of-Life
Treatment (EoLT). The ICT LCA application considered
in this study is the assessment of energy consumption as
well as evaluation of an environmental impact, namely
carbon footprint of four NIO algorithms and comparative
analysis between them. Figure 1 shows the structure of the
LCA methodology specification for ICT GNS.
The first phase of LCA is General Requirements, which

consists of high-level requirements of life cycle stages
that will be assessed in the context of the problem. In
this study, the four NIO algorithms have been consid-
ered as an ICT service (application), and their use stage
has been considered, where the algorithms impact on
energy use. The second phase is Goal and Scope Defi-
nition, where the goal phase states the intended appli-
cation, reasons for conducting the study as well as the
intended audience to whom the results of the study will
be beneficial, while the scoping phase identifies the build-
ing blocks and system boundaries of the ICT GNS. In
this study, the goal and scope have been defined in
Section 1.

Fig. 1 LCA Methodology Specification Structure for ICT GNS [69]

Jamil and Kor Green Technology, Resilience, and Sustainability (2022) 2:1 Page 5 of 12

The third phase is the Life Cycle Inventory (LCI) which
includes data collection within the system boundary and
analysis of the collected data to quantify the inputs and
outputs of a unit process. In this study, a discussion of
data collection has been presented in Sections 3.2 and 3.4,
while the analysis of the collected data has been presented
in Sections 4.1 and 4.3. The fourth phase is the Life Cycle
Impact Assessment (LCIA) that estimates the potential
environmental impact quantified in the LCI analysis. In
this study, the potential environmental impact has been
estimated in Section 4.2.
The fifth phase is the Life Cycle Interpretation, where

findings from the LCI analysis and LCIA are considered
together to answer queries raised in the goal definition as
well as draw conclusions, identify limitations and provide
recommendations. The sixth and final phase is report-
ing which summarizes the various reporting requirements
and additional reporting considerations in order to make
evidence-based decisions. In this study, a summary of the
discussion and some scope of improvement for future
studies have been presented in Section 5.

3.2 Micro methodology
The micro methodology involves the use of a number of
tools or software, as discussed below.

3.2.1 Data collection
The four NIO algorithms considered in this study have
been gathered from existing literature [8, 16, 23, 29] and
implemented accordingly using MATLAB.

3.2.2 Energy profiling
The energy consumption of each NIO algorithm has
been estimated using Microsoft Joulemeter software [70],
which has the ability to measure the energy consumed by
a running application or software and individual hardware
resources, such as CPU, Monitor, Disk, and Idle or Base
power.

3.2.3 Carbon footprint
The DEFRA guideline for greenhouse gas conversion
factors [71] has been used for calculating carbon foot-
print corresponding to the energy consumption of
each algorithm. After obtaining energy consumption
in terms of kilowatt-hours (kWh), the recorded data
is converted from kWh into equivalent CO2 emission
based on the emission factor for electricity consumption
(0.25319 kgCO2e/kWh).

3.3 Experiment setup
3.3.1 System specification
Different hardware specifications would bring about dif-
ferent results. Therefore, all experiments were conducted
on a laptop with the following specifications shown in
Table 1.

Table 1 System Specification

3.3.2 Calibrating Joulemeter
SinceWindows 8.1 Pro operating system lacks the support
for automatic calibration (in Joulemeter), the calibration
has been done manually based on the Joulemeter user
manual, which is shown in Fig. 2.

3.4 Experiment design
All four NIO algorithms have been implemented using
MATLAB programming language. A commonly used
benchmark function, namely sphere function, has been
used for measuring the energy consumption of these four
algorithms. The sphere function can be written as:

f (x) =
d∑

i=1
x2i (1)

where search space, xi ∈[−5.12, 5.12], for i = 1, ..., d, and
global minimum, f (x∗) = 0, at x∗ = (0, ..., 0).
For each algorithm, the dimension size (D) has been

taken as 50, population size as 10 ∗ D, maximum itera-
tion as 100 ∗ D, and optimal value to reach is set as 10−8.
All algorithms have been executed ten times separately,
and during each run, the estimated energy consumption
of each algorithm has been captured by Joulemeter.
For each algorithm, the dimension size, population size,

maximum iteration, optimal value to reach, and the num-
ber of execution have been considered the same to analyze
the measurements’ consistency and avoid outliers.
The corresponding result of each algorithm has been

stored in a separate CSV file. All results of each algorithm
have been aggregated in an Excel file for analyzing the
energy consumption of these four algorithms. The design
of experiments can be summarized as follows.

- Nature-Inspired Optimization (NIO) Algorithms:{
GA, PSO, DE, ABC

}

- Programming Language: MATLAB
- Benchmark Function: Sphere Function
- Search Space: [-5.12, 5.12]
- Dimension Size (D): 50
- Population Size: 10 ∗ D
- Maximum Iteration: 100 ∗ D
- Optimal Value to reach: 10−8

4 Findings and discussion
4.1 Energy consumption
The details of energy consumed by each optimization
algorithm for all experiment runs are shown in Table 2,

Jamil and Kor Green Technology, Resilience, and Sustainability (2022) 2:1 Page 6 of 12

Fig. 2 Calibration of Joulemeter

while Table 3 depicts the aggregated data for all the exper-
iments conducted for each algorithm.
The convergence time of each algorithm is different.

Therefore, to perform a fair comparison and maintain the
measurements’ consistency between four algorithms, the
corresponding energy consumption of each algorithm is
normalized for t = 1s, which is shown in Table 4.
For better illustration, Fig. 3 shows a comparison of

normalized hardware energy consumption for each algo-
rithm, while Fig. 4 depicts the energy consumption by the
hardware and application for each algorithm.
From Table 4 and Fig. 3, it can be seen that the DE

algorithm consumes the least energy, followed by PSO
and GA, while ABC algorithm has the highest energy
consumption.
As mentioned earlier, different hardware specifications

would bring about different results. Therefore, if the
experiments are conducted on a laptop with different
specifications, the result will vary.
From Fig. 4, it can be observed that the energy

consumption of hardware that runs the application is
much higher compared to the energy consumed by the
application for each algorithm. In order to facilitate
the reduction of the overall energy consumption, more
research and investigation need to focus on the optimiza-
tion of interaction and processes between hardware and
software [52].
Since DE algorithm is found to have the lowest energy

consumption, it is used as a base to investigate the
energy consumption ratio of other algorithms which is
shown in Table 5. From Table 5, it is obvious that run-
ning ABC algorithm consumes almost four times more
energy compared to DE algorithm, while the energy
consumed by GA algorithm is approximately double
in comparison with DE algorithm. The energy con-
sumed by PSO is comparatively lower than ABC and GA
algorithms.

4.2 Carbon footprint
The carbon footprint of each algorithm has been cal-
culated by converting the aggregated total energy con-
sumption (kWh) into equivalent CO2 emission based
on the emission factor for electricity consumption
(0.25319/kgCO2e/kWh) [71], which is shown in Table 6.
From Table 6, it can be seen that DE algorithm has the

lowest carbon footprint, followed by PSO and GA, while
ABC algorithm has the highest carbon footprint among all
algorithms.

4.3 One-way ANOVA (Analysis of variance) test
A statistical parametric test, named one-way ANOVA,
has been conducted to verify whether the average energy
consumption per second of these four algorithms is signif-
icantly different or not at the significance level (α = 0.05)
using Excel Data Analysis ToolPak.
The statistical hypotheses for one-way ANOVA are for-

mulated as follows.

- Null Hypothesis: The average energy consumed by
each algorithm is equal.

- Alternative Hypothesis: The average energy
consumption of each algorithm is significantly
different.

The null hypothesis for the test will be rejected if the 481
p-value is less than the significance level (α = 0.05) [72]
or otherwise. In order to understand the energy impact
of each algorithm, the ANOVA test is performed on the
average energy consumption per second (J/s) of each algo-
rithm for all experiment runs, as shown in Table 7. Results
obtained after the ANOVA test are depicted in Table 8.
From Table 8, it is evident that the p-value (5.85E − 37)

is less than the significance level (α = 0.05), so the
null hypothesis is rejected. Therefore, it can be concluded
from the ANOVA test that the average energy consumed
by each algorithm is significantly different.

Jamil and Kor Green Technology, Resilience, and Sustainability (2022) 2:1 Page 7 of 12

Table 2 Energy Consumption of Each Algorithm for all Experiments

Table 3 Aggregated Energy Consumption for Each Algorithm

Table 4 Normalized Energy Consumption for Each Algorithm (for t = 1s)

Jamil and Kor Green Technology, Resilience, and Sustainability (2022) 2:1 Page 8 of 12

Fig. 3 Comparison of Normalized Hardware Energy Consumption for Each Algorithm

4.4 Ethical issues and challenges
The goal of this study is to measure and understand the
energy consumption behavior of four NIO algorithms.
This study will provide greater insight into how one
NIO algorithm performs compared to other algorithms
in terms of energy consumption. Some possible validity-
related problems in this study can be divided into four
categories [73, 74], namely conclusion validity, internal
validity, construct validity, and external validity.

4.4.1 Conclusion validity
This category describes factors that may influence the
validity of drawn conclusions [74]. From the experi-
ments conducted in this study, it is clear that different
NIO algorithms incur varying amount of processing-
related energy consumption. For a better comparison,
the energy consumption of the CPU as well as other
hardware resources consumption, such as Monitor, Disk,
and Idle or Base power, have also been measured.
Additionally, to present the analysis in this study, only
four NIO algorithms have been chosen due to their
applicability to solving a wide range of problems in
diverse areas. Nevertheless, the experiments conducted

in this research could be replicated for other NIO
algorithms.

4.4.2 Internal validity
This category concerns itself with what factors may inter-
fere with the results of a study [74]. When measuring the
energy consumption of the four NIO algorithms, other
factors alongside the different implementations of algo-
rithms using different programming languages may con-
tribute to variations, for example, a specific version of a
laptop. In order to avoid this, every NIO algorithm has
been implemented using MATLAB, and the energy con-
sumption of these algorithms is measured by utilizing a
commonly used benchmark function named Sphere Func-
tion. Besides, on a specific laptop, each NIO algorithm
was executed 10 times, and the corresponding energy
consumption of each algorithm was measured accord-
ingly. This allowed us to minimize the particular states
of the tested machine, including uncontrollable system
processes and software. However, the measured results
are quite consistent and thus reliable. In addition, the
used energy measurement tool has also been proven to be
accurate.

Fig. 4 Comparison of Normalized Hardware and Application Energy Consumption for Each Algorithm

Jamil and Kor Green Technology, Resilience, and Sustainability (2022) 2:1 Page 9 of 12

Table 5 Energy Consumption Ratio for Each Algorithm

4.4.3 Construct validity
This category concerns the generalization of the results to
concepts or theories that underlie the experiments [74].
In practice, all the four NIO algorithms have been imple-
mented in different programming languages. However,
in this research, each algorithm has been implemented
using MATLAB, and the energy consumption of these
algorithms is measured by utilizing a commonly used
benchmark function named Sphere Function. This allows
us to compare the energy consumption of different NIO
algorithms for the same task execution. Steps have been
taken to ensure that the experimental procedures remain
consistent for all the four algorithms.

4.4.4 External validity
This is concerned with the generalization of the results
[74]. The greenest NIO algorithm found in this study is
based on the outcome of several conducted set of experi-
ments. Since there exist more than a hundred NIO algo-
rithms and their variants in the literature [2], we could not
make a generalization about the greenest NIO algorithm
because it requires further experiments with all other
NIO algorithms. Additionally, experiments run on vary-
ing devices would yield different results. In order to ensure
consistency and valid results, the algorithms would have
to be deployed on the same device. Thus, it is necessary to
report the experiment procedures in order to understand

Table 6 Carbon Footprint for Each Algorithm

its applicability to other contexts [74]. To summarize, the
actual approach and methodology used in this study fos-
ters easy replications. Thus, other researchers would be
able to easily replicate the applied methodology for future
work.

5 Conclusion and future work
In this study, energy consumption and associated carbon
footprint of four widely used Nature-Inspired Optimiza-
tion (NIO) algorithms have been examined. Each opti-
mization algorithm exhibits significantly different energy
consumption, where Differential Evolution (DE) is found
to be greenest compared to other algorithms. In addition,
a one-way Analysis of Variance (ANOVA) test has been
performed, where the test reveals that the average energy
consumed by each algorithm is significantly different from
each other. The aim of this study will raise awareness of
the energy efficiency issue of NIO algorithms and encour-
age researchers to conduct more research in this field
to provide pragmatic yet greener solutions. Research in

Table 7 Average Energy Consumed by Each Algorithm for all
Experiments

Jamil and Kor Green Technology, Resilience, and Sustainability (2022) 2:1 Page 10 of 12

Table 8 ANOVA Test Result

this area will eventually help developers choose the most
appropriate yet green algorithm for a particular domain
problem when energy efficiency is the top priority.
However, there exist some challenging concerns of NIO

algorithms in spite of their popularity and effectiveness.
All NIO algorithms contain algorithm-dependent param-
eters, and the value of these parameters can significantly
influence their performance under consideration [75]. It
is still not evident what the best value of these parame-
ters is to achieve an optimal balance of exploration and
exploitation for a given algorithm and a given set of prob-
lems as parameter settings can be algorithm or problem-
dependent [61]. Therefore, an investigation of tuning and
controlling of parameters for NIO algorithms can be
explored so that their performance can bemaximizedwith
reduced energy consumption.
As far as future work is concerned, more NIO algo-

rithms and their variants can be considered for energy
consumption analysis so that the top ten greenest NIO
algorithms could be identified. Besides, more benchmark
functions and real-life optimization problems can also be
taken into account while evaluating the energy consump-
tion of NIO algorithms. Moreover, different CPU archi-
tectures, such as AMD and ARM, can also be considered
for running these algorithms. Energy usage of hardware
resources for different CPU architectures can be collected
in order to identify possible relationships between NIO
algorithms and the energy usage of hardware resources.
All these proposed efforts will shed light energy efficiency
of NIO algorithms for complex applications.

Authors’ contributions
Mohammad Newaj Jamil: Conceptualization, Formal analysis, Software,
Investigation, Visualization, Validation, Writing - Original draft preparation;
Ah-Lian Kor: Supervision, Project administration, Methodology, Data curation,
Writing - Reviewing & Editing. Both authors read and approved the final
manuscript.

Funding
This research has been supported by EMJMD GENIAL
(610619-EPP-1-2019-1-FR-EPPKA1-JMD-MOB).

Availability of data andmaterial
Data and material of this study is available on request from the corresponding
author.

Code availability
Code used in this study is available on request from the corresponding author.

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no conflict of interest.

Received: 3 September 2021 Accepted: 8 December 2021

References
1. Li H, Liu X, Huang Z, Zeng C, Zou P, Chu Z, Yi J. Newly emerging nature-

inspired optimization-algorithm review, unified framework, evaluation,
and behavioural parameter optimization. IEEE Access. 2020;8:72620–49.

2. Yang X-S. Nature-inspired Optimization Algorithms. London: Academic
Press; 2020.

3. Bayer H, Nebel M. Evaluating algorithms according to their energy
consumption. Math Theory Comput Pract. 2009;48:1–25.

4. Podder S, Burden A, Singh SK, Maruca R. Sustainable Business practices –
How Green Is Your Software? 2020. Harvard Business Review. https://hbr.
org/2020/09/how-green-is-your-software Accessed 8 Jan 2022.

5. Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge: MIT
press; 2016.

6. Schwartz R, Dodge J, Smith NA, Etzioni O. Green ai. Commun ACM.
2020;63(12):54–63.

7. Strubell E, Ganesh A, McCallum A. Energy and policy considerations for
deep learning in NLP. In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Florence: Association for
Computational Linguistics; 2019. p. 3645–50.

8. Taylor CE. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence.
Complex adaptive systems. John H. Holland. Q Rev Biol. 1994;69(1):88–9.

9. Li Y, Ang KH, Chong GC, Feng W, Tan KC, Kashiwagi H.
Cautocsd-evolutionary search and optimisation enabled computer
automated control system design. Int J Autom Comput. 2004;1(1):76–88.

10. Zhang J, Chung HS, Lo W-L. Pseudocoevolutionary genetic algorithms
for power electronic circuits optimization. IEEE Trans Syst Man Cybern C
(Appl Rev). 2006;36(4):590–8.

11. To CC, Vohradsky J. A parallel genetic algorithm for single class pattern
classification and its application for gene expression profiling in
streptomyces coelicolor. BMC Genom. 2007;8(1):1–13.

12. Gondro C, Kinghorn BP. A simple genetic algorithm for multiple
sequence alignment. Genet Mol Res. 2007;6(4):964–82.

13. Kia R, Khaksar-Haghani F, Javadian N, Tavakkoli-Moghaddam R. Solving a
multi-floor layout design model of a dynamic cellular manufacturing
system by an efficient genetic algorithm. J Manuf Syst. 2014;33(1):218–32.

14. Vitayasak S, Pongcharoen P, Hicks C. A tool for solving stochastic
dynamic facility layout problems with stochastic demand using either a
genetic algorithm or modified backtracking search algorithm. Int J Prod
Econ. 2017;190:146–57.

15. Katoch S, Chauhan SS, Kumar V. A review on genetic algorithm: past,
present, and future. Multimed Tools Appl. 2021;80(5):8091–126.

16. Shi Y, Eberhart R. A modified particle swarm optimizer. In: 1998 IEEE
International Conference on Evolutionary Computation Proceedings. IEEE
World Congress on Computational Intelligence (Cat. No. 98TH8360).
Anchorage: IEEE; 1998. p. 69–73.

17. Sheta AF, Ayesh A, Rine D. Evaluating software cost estimation models
using particle swarm optimisation and fuzzy logic for nasa projects: a
comparative study. Int J Bio-Inspired Comput. 2010;2(6):365–73.

https://hbr.org/2020/09/how-green-is-your-software
https://hbr.org/2020/09/how-green-is-your-software

Jamil and Kor Green Technology, Resilience, and Sustainability (2022) 2:1 Page 11 of 12

18. Saini S, Bt Awang Rambli DR, Zakaria MNB, Bt Sulaiman S. A review on
particle swarm optimization algorithm and its variants to human motion
tracking. Math Probl Eng. 2014;2014:1–16.

19. Mohana R. A position balanced parallel particle swarm optimization
method for resource allocation in cloud. Indian J Sci Technol. 2015;8(S3):
182–8.

20. Delice Y, Kızılkaya Aydoğan E, Özcan U, undefinedlkay MS. A modified
particle swarm optimization algorithm to mixed-model two-sided
assembly line balancing. J Intell Manuf. 2017;28(1):23–36.

21. Esmin AA, Coelho RA, Matwin S. A review on particle swarm
optimization algorithm and its variants to clustering high-dimensional
data. Artif Intell Rev. 2015;44(1):23–45.

22. Li M, Du W, Nian F. An adaptive particle swarm optimization algorithm
based on directed weighted complex network. Math Probl Eng.
2014;2014:1–7.

23. Storn R, Price K. Differential evolution–a simple and efficient heuristic for
global optimization over continuous spaces. J Glob Optim. 1997;11(4):
341–59.

24. Qing A. Dynamic differential evolution strategy and applications in
electromagnetic inverse scattering problems. IEEE Trans Geosci Remote
Sens. 2005;44(1):116–25.

25. Michalski KA. Electromagnetic imaging of elliptical–cylindrical conductors
and tunnels using a differential evolution algorithm. Microw Opt Technol
Lett. 2001;28(3):164–9.

26. Pal S, Qu B, Das S, Suganthan P. Optimal synthesis of linear antenna
arrays with multi-objective differential evolution. Prog Electromagn Res B.
2010;21:87–111.

27. Chakraborty J, Konar A, Jain LC, Chakraborty UK. Cooperative
multi-robot path planning using differential evolution. J Intell Fuzzy Syst.
2009;20(1, 2):13–27.

28. Wu Y-C, Lee W-P, Chien C-W. Modified the performance of differential
evolution algorithm with dual evolution strategy. In: 2009 International
conference on machine learning and computing IPCSIT. vol. 3. Singapore:
IACSIT Press; 2011. p. 57–63.

29. Karaboga D. An idea based on honey bee swarm for numerical
optimization. Technical report, Citeseer. 2005.

30. Secui DC. A new modified artificial bee colony algorithm for the
economic dispatch problem. Energy Convers Manag. 2015;89:43–62.

31. Karaboga D, Gorkemli B. A combinatorial artificial bee colony algorithm
for traveling salesman problem. In: 2011 International Symposium on
Innovations in Intelligent Systems and Applications. Istanbul: IEEE; 2011.
p. 50–3.

32. Contreras-Cruz MA, Ayala-Ramirez V, Hernandez-Belmonte UH. Mobile
robot path planning using artificial bee colony and evolutionary
programming. Appl Soft Comput. 2015;30:319–28.

33. Pan J-S, Wang H, Zhao H, Tang L. Interaction artificial bee colony based
load balance method in cloud computing. In: Genetic and Evolutionary
Computing. Yangon: Springer; 2015. p. 49–57.

34. Bose A, Mali K. Fuzzy-based artificial bee colony optimization for gray
image segmentation. Signal Image Video Process. 2016;10(6):1089–96.

35. Zhao J, Lv L, Sun H. Artificial bee colony using opposition-based learning.
In: Genetic and Evolutionary Computing. Yangon: Springer; 2015. p. 3–10.

36. Pereira R, Couto M, Ribeiro F, Rua R, Cunha J, Fernandes JP, Saraiva J.
Energy efficiency across programming languages: how do energy, time,
and memory relate? In: Proceedings of the 10th ACM SIGPLAN
International Conference on Software Language Engineering. New York:
Association for Computing Machinery; 2017. p. 256–67.

37. Georgiou S, Kechagia M, Spinellis D. Analyzing programming languages’
energy consumption: An empirical study. In: Proceedings of the 21st
Pan-Hellenic Conference on Informatics. New York: Association for
Computing Machinery; 2017. p. 1–6.

38. Pereira R, Couto M, Ribeiro F, Rua R, Cunha J, Fernandes JP, Saraiva J.
Ranking programming languages by energy efficiency. Sci Comput
Program. 2021;205:102609.

39. Rashid M, Ardito L, Torchiano M. Energy consumption analysis of
algorithms implementations. In: 2015 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM). Beijing:
IEEE; 2015. p. 1–4.

40. Verma M, Chowdhary K. Analysis of energy consumption of sorting
algorithms on smartphones. In: Proceedings of 3rd International
Conference on Internet of Things and Connected Technologies (ICIoTCT).
Rochester: ELSEVIER-SSRN; 2018. p. 472–5.

41. Deepthi T, Birunda A. Time and energy efficiency: A comparative study of
sorting algorithms implemented in c. In: International Conference on
Advancements in Computing Technologies-ICACT 2018. vol. 4. India:
IJFRCSCE; 2018. p. 25–7.

42. Ayodele OS, Oluwade B. A Comparative Analysis of Quick, Merge and
Insertion Sort Algorithms using Three Programming Languages II: Energy
Consumption Analysis. Afr J MIS. 2019;1(2):44–63.

43. Webb M, et al. Smart 2020: Enabling the low carbon economy in the
information age. Clim Group Lond. 2008;1(1):1.

44. Murugesan S. Going Green with IT: Your Responsibility Toward
Environmental Sustainability. Arlington: Cutter Consortium; 2007.

45. Simunic T, Benini L, De Micheli G. Energy-efficient design of
battery-powered embedded systems. IEEE Trans Very Large Scale Integr
(VLSI) Syst. 2001;9(1):15–28.

46. Schmitz MT, Al-Hashimi BM, Eles P. System-level Design Techniques for
Energy-efficient Embedded Systems. Berlin: Springer Science & Business
Media; 2004.

47. Hosangadi A, Kastner R, Fallah F. Energy efficient hardware synthesis of
polynomial expressions. In: 18th International Conference on VLSI Design
Held Jointly with 4th International Conference on Embedded Systems
Design. India: IEEE; 2005. p. 653–8.

48. Shiri A, Mazumder AN, Prakash B, Manjunath NK, Homayoun H, Sasan A,
Waytowich NR, Mohsenin T. Energy-efficient hardware for language
guided reinforcement learning. In: Proceedings of the 2020 on Great
Lakes Symposium on VLSI. New York: Association for Computing
Machinery; 2020. p. 131–6.

49. Capra E, Francalanci C, Slaughter SA. Is software “green”? Application
development environments and energy efficiency in open source
applications. Inf Softw Technol. 2012;54(1):60–71.

50. D’Agostino D, Merelli I, Aldinucci M, Cesini D. Hardware and software
solutions for energy-efficient computing in scientific programming. Sci
Prog. 2021;2021:1–9.

51. Naumann S, Dick M, Kern E, Johann T. The greensoft model: A reference
model for green and sustainable software and its engineering. Sustain
Comput Inf Syst. 2011;1(4):294–304.

52. Kor A-L, Pattinson C, Imam I, AlSaleemi I, Omotosho O. Applications,
energy consumption, and measurement. In: 2015 International
Conference on Information and Digital Technologies. Zilina: IEEE; 2015. p.
161–171.

53. Pattinson C, Olaoluwa PO, Kor A-L. A comparative study on the energy
consumption of PHP single and double quotes. In: 2015 IEEE International
Conference on Data Science and Data Intensive Systems. Sydney: IEEE;
2015. p. 232–9.

54. Engel M. Sustainable software design. In: Green Information Technology.
San Francisco: Elsevier; 2015. p. 111–27.

55. Dastbaz M, Pattinson C, Akhgar B. Green Information Technology: A
Sustainable Approach. San Francisco: Morgan Kaufmann; 2015.

56. Ardito L, Procaccianti G, Torchiano M, Vetro A. Understanding green
software development: A conceptual framework. IT Prof. 2015;17(1):44–50.

57. Murugesan S. Harnessing green IT: Principles and practices. IT Prof.
2008;10(1):24–33.

58. Ferreira MA, Hoekstra E, Merkus B, Visser B, Visser J. Seflab: A lab for
measuring software energy footprints. In: 2013 2nd International
Workshop on Green and Sustainable Software (GREENS). San Francisco:
IEEE; 2013. p. 30–7.

59. Bener AB, Morisio M, Miranskyy A. Green software. IEEE Softw. 2014;31(3):
36–9.

60. Barontini A, Masciotta M-G, Ramos LF, Amado-Mendes P, Lourenço PB.
An overview on nature-inspired optimization algorithms for structural
health monitoring of historical buildings. Proc Eng. 2017;199:3320–5.
https://doi.org/10.1016/j.proeng.2017.09.439. X International Conference
on Structural Dynamics, EURODYN 2017.

61. Yang X-S. Nature-inspired optimization algorithms: Challenges and open
problems. J Comput Sci. 2020;46:101104.

62. Abdollahzadeh B, Soleimanian Gharehchopogh F, Mirjalili S. Artificial
gorilla troops optimizer: A new nature-inspired metaheuristic algorithm
for global optimization problems. Int J Intell Syst. 2021;36(10):5887–958.
https://doi.org/10.1002/int.22535.

63. Mohanty A, Nag KS, Bagal DK, Barua A, Jeet S, Mahapatra SS, Cherkia H.
Parametric optimization of parameters affecting dimension precision of
fdm printed part using hybrid taguchi-marcos-nature inspired heuristic
optimization technique. Mater Today Proc. 2021. https://doi.org/10.1016/
j.matpr.2021.06.216.

https://doi.org/10.1016/j.proeng.2017.09.439
https://doi.org/10.1002/int.22535
https://doi.org/10.1016/j.matpr.2021.06.216
https://doi.org/10.1016/j.matpr.2021.06.216

Jamil and Kor Green Technology, Resilience, and Sustainability (2022) 2:1 Page 12 of 12

64. Sadrnia A, Soltani HR, Zulkifli N, Ismail N, Ariffin MKA. A review of
nature-based algorithms applications in green supply chain problems. Int
J Eng Technol. 2014;6(3):204–11.

65. Nguyen T-H, Nguyen LV, Jung JJ, Agbehadji IE, Frimpong SO, Millham
RC. Bio-inspired approaches for smart energy management: State of the
art and challenges. Sustainability. 2020;12(20):. https://doi.org/10.3390/
su12208495.

66. Usman MJ, Ismail AS, Abdul-Salaam G, Chizari H, Kaiwartya O, Gital AY,
Abdullahi M, Aliyu A, Dishing SI. Energy-efficient nature-inspired
techniques in cloud computing datacenters. Telecommun Syst. 2020;71:
275–302. https://doi.org/10.1007/s11235-019-00549-9.

67. Sharma R, Vashisht V, Singh U. Nature inspired algorithms for energy
efficient clustering in wireless sensor networks. In: 2019 9th International
Conference on Cloud Computing, Data Science Engineering (Confluence);
2019. p. 365–70. https://doi.org/10.1109/CONFLUENCE.2019.8776618.

68. Agbehadji IE, Millham RC, Abayomi A, Jung JJ, Fong SJ, Frimpong SO.
Clustering algorithm based on nature-inspired approach for energy
optimization in heterogeneous wireless sensor network. Appl Soft
Comput. 2021;104:107171. https://doi.org/10.1016/j.asoc.2021.107171.

69. ITU-T L.1410. Methodology for Environmental Life Cycle Assessments of
Information and Communication Technology Goods, Networks and
Services. 2014. Series L: Construction, Installation and Protection of Cables
and Other Elements of outside Plant. Geneva. https://www.itu.int/rec/T-
REC-L.1410-201412-I.

70. Kansal A, Goraczko M, Liu J, Zhao F. Joulemeter: Computational Energy
Measurement and Optimization; 2010. Microsoft Research, Redmond,
United States https://www.microsoft.com/en-us/research/project/
joulemeter-computational-energy-measurement-and-optimization/
Accessed 8 Jan 2022.

71. DEFRA. UK Government Greenhouse Gas Conversion Factors for
Company Reporting. Department for Business, Energy & Industrial
Strategy. 2020. https://assets.publishing.service.gov.uk/government/
uploads/system/uploads/attachment_data/file/901692/conversion-
factors-2020-methodology.pdf.

72. Ross A, Willson VL. One-way anova. In: Basic and Advanced Statistical
Tests. Rotterdam: SensePublishers; 2017. p. 21–4.

73. Campbell DT, Cook TD. Quasi-experimentation: Design & Analysis Issues
for Field Settings. Boston: Houghton Mifflin; 1979.

74. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A.
Experimentation in Software Engineering. Berlin: Springer Science &
Business Media; 2012.

75. Yang X-S. Nature-inspired Algorithms and Applied Optimization, vol. 744.
Gewerbestrasse, Cham: Springer; 2017.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.3390/su12208495
https://doi.org/10.3390/su12208495
https://doi.org/10.1007/s11235-019-00549-9
https://doi.org/10.1109/CONFLUENCE.2019.8776618
https://doi.org/10.1016/j.asoc.2021.107171
https://www.itu.int/rec/T-REC-L.1410-201412-I
https://www.itu.int/rec/T-REC-L.1410-201412-I
https://www.microsoft.com/en-us/research/project/joulemeter-computational-energy-measurement-and-optimization/
https://www.microsoft.com/en-us/research/project/joulemeter-computational-energy-measurement-and-optimization/
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/901692/conversion-factors-2020-methodology.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/901692/conversion-factors-2020-methodology.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/901692/conversion-factors-2020-methodology.pdf

	Abstract
	Keywords

	Introduction
	Literature review
	Environmental impact of ICT
	Energy-efficient software
	Impact of hardware-Related energy consumption by software
	Analysis of energy consumption in algorithms implementations
	Nature-inspired algorithms and energy efficiency

	Methodology
	Macro methodology
	Micro methodology
	Data collection
	Energy profiling
	Carbon footprint

	Experiment setup
	System specification
	Calibrating Joulemeter

	Experiment design

	Findings and discussion
	Energy consumption
	Carbon footprint
	One-way ANOVA (Analysis of variance) test
	Ethical issues and challenges
	Conclusion validity
	Internal validity
	Construct validity
	External validity

	Conclusion and future work
	Authors' contributions
	Funding
	Availability of data and material
	Code availability
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

