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Input-Output Feedback Linearization Control for a PWR Nuclear
Power Plant

Amine Naimi1, Jiamei Deng1,∗, Akbar Sheikh-Akbari1, S. R. Shimjith2 and A. John Arul 3

Abstract— This study proposes a feedback linearization-
based control using a dynamic neural network to control a pres-
surized water-type nuclear power plant. The nonlinear plant
model adopted in this study is characterized by five inputs, five
outputs and, 38 state variables. The model is linearized through
dynamic neural network-based system identification and feed-
back linearization. The proportional–integral–derivative (PID)
controller is subsequently applied to the linearized process.
The effectiveness of the proposed approach is demonstrated
by simulations on different subsystems of a pressurized water
reactor nuclear power plant model. Simulation results show that
the proposed strategy offers good performance and is capable
of effectively tracking the reference under disturbances.

I. INTRODUCTION

Nuclear power plants (NPPs) have the characteristic of
being complex and highly nonlinear. Moreover, they are
subject to parameter variations mainly caused by internal
reactivity feedback, fuel burn-up, and modelling uncertain-
ties. NPP operation and control pose a significant challenge,
especially when the load-following mode of operation is
desired. In fact, daily load cycles can significantly affect
the performance of a plant because of the wide range of
power variations. Therefore, it is of greatest importance to
design an appropriate controller to ensure that the NPP power
tracks the power set-point, while ensuring the safety and
good operability of the process.

Proportional–integral–derivative (PID) controllers have
been designed for the load-following operation of nuclear
reactors [1]–[3]. The PID controller performance depends on
the gain values used; hence, to achieve better performance, it
is important that the PID gains are tuned in an optimal man-
ner. In recent works, intelligent algorithms have been used
for the gain tuning of PID controllers [4], [5]. Linear robust
controllers have also been employed for the temperature and
power control of NPPs. Banavar et al. [6] proposed an H∞
control based on normalized co-prime factorization approach
for the power-level control of a pressurized heavy-water
reactor (PHWR). Yan et al. [7] designed an H∞ controller
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to attain stability in power operations in the presence of
external disturbances and model uncertainties for a small
pressurized water reactor (PWR). Further, the technique of
linear quadratic control with loop transfer recovery has been
employed to enhance robustness and deal with parameter
uncertainties in a load-following PWR [8], [9]. Nevertheless,
the performance of these robust controllers is valid only in
a limited range because they are based on linear models.
Hence, it is essential to design control strategies capable of
performing in a wide range of operations, such as the load-
following mode.

Nonlinear control approaches such as backstepping (BST),
sliding mode control (SMC) and feedback linearization
(FBL) have been proposed to overcome these issues. Wei et
al. [10] used a BST control for the water level regulation of
a nuclear U-tube steam generator. Dong et al. [11] proposed
an approach based on BST and feedback dissipation to
control the power level of a nuclear reactor. Ansarifar et
al. [12] employed an SMC strategy to control a PWR in
load-following operation, ensuring that the xenon chattering
was maintained within acceptable limits. In a more recent
study [13], the SMC was combined with the conventional
FBL; performance was improved and the chattering effect
was significantly reduced. Liu et al. [14] also applied the FBL
technique with linear active disturbance rejection (LADR)
for a PWR. The main disadvantage of these controllers is
that they require an exact mathematical model of the PWR
system.

Neural networks (NNs) have an inherent ability to learn
and approximate nonlinear systems with an arbitrary accu-
racy [15]. Some kinds of feedforward NNs provided suitable
and improved modeling performance in PWR systems [16]–
[18]. However, the main drawback of feedforward NNs is
that they are essentially static and limited in represent-
ing complex systems. Conversely, dynamic neural networks
(DNNs) have proved to be more effective than static NNs due
to their structures [19]. The simplicity of their architectures
makes them suitable together with nonlinear control tech-
niques [21]–[24]. This paper proposes a DNN-based FBL
approach for the effective control of an entire PWR. The
DNN is trained to approximate the dynamic behavior of
the nonlinear process, and it is used to compute the FBL
control law. The effectiveness of the proposed strategy was
validated on the five loops of the PWR system, namely the
reactor core, steam generator, pressurizer pressure and level,
and the turbine speed loops. The proposed control scheme
was tested under external disturbances and compared with
the performance of the classical model predictive controller.



It was demonstrated that the controller can effectively handle
the disturbances and track the desired set point demand with
good accuracy.

The remainder of this paper is organized as follows.
Section II provides a brief summary of the nonlinear PWR
model. Section III discusses the DNN structure used for
the plant identification and formulates the proposed control
scheme. The simulation results are given in Section IV before
presenting the conclusion in Section V.

II. PRESSURIZED WATER REACTOR

The PWR model adopted in this study can be found in
the literature [25]. The PWR plant model consists of various
subsystems, such as the reactor core, thermal hydraulics,
steam generator, piping and plenum, pressurizer, and turbine-
governor system. For a detailed and complete description of
the entire NPP model, the readers are kindly referred to [25].

A. Reactor Core Model

The reactor model can be described using the point kinet-
ics equation, with six groups of delayed neutrons precursors’
concentration coupled with thermal hydraulics. The model of
the reactor core is represented as follows:

dPn

dt
=

ρt −
6∑

i=1

βi

Λ
Pn +

6∑
i=1

λiCin, (1)

dCin

dt
= λi(Pn − Cin), i = 1, 2, . . . 6, (2)

dTf

dt
= HfPn − 1

τf
(Tf − Tc1) , (3)

dTc1

dt
= HcPn +

1

τc
(Tf − Tc1)−

2

τr
(Tc1 − Tcin) , (4)

dTc2

dt
= HcPn +

1

τc
(Tf − Tc1)−

2

τr
(Tc2 − Tc1) , (5)

ρttl = ρrd + αfTf + αc (Tc1 + Tc2) , (6)
dρrd
dt

= Gvrd. (7)

In the above equations, Pn is the normalized neutronic
power; Cin is the normalized delayed neutron precursors’
concentration; βi and λ are the fraction of delayed neutrons
and decay constant, respectively; Λ is the prompt neutron
lifetime; ρttl and ρrd represent the total reactivity and the
reactivity due to the control rod, repectively; Tf , Tc1, and
Tc2 are the temperatures at fuel, coolant node 1 and node
2, respectively. Hf and Hc are proportionality constants; τc,
and τr are time constants; αf and αc denote the temperature
coefficients of reactivity due to fuel and coolant, respectively;
G and vrd represent the reactivity worth and the rod speed,
respectively.

III. CONTROLLER IMPLEMENTATION

A. Proposed Control Approach

Fig. 1 depicts the proposed control architecture (FBL-
DNN) for the PWR process. First, offline training is per-

Fig. 1: Block diagram of the proposed control scheme.

formed for the DNN to learn the dynamics of the non-
linear process. The quasi-Newton algorithm is employed
for the training exercise. Based on the DNN model, the
FBL technique is applied to the nonlinear plant to create
a linear relationship between the virtual control output v
and the system output y. The last step consists of using a
conventional linear PID controller to control the feedback
linearized plant.

1) System Identification Using DNN
System identification is an approach that consists of build-

ing mathematical models based on the measurements of
the input and output signals of the process [26]. As far as
this study is concerned, the system identification is based
on DNN for the identification of each subsystem of the
PWR system. In contrast to static NNs, which have limited
performance in modeling and mapping, DNNs have the
capacity to learn complex nonlinear systems. The dynamic
neuron model consists of internal dynamics that are added
to a static neuron and consist of making the activity of the
neuron dependent on its internal state. The DNN of interest
is formed by a single layer and described in [23], [26]. The
DNN can be represented by the following vector equation:

ẋn = −βnxn + ωnσ (xn) + γnun (8)
ŷn = Cnxn (9)

where xn, yn, and un are the vector state, the estimated
vector output, and the vector input of the DNN, respectively;
βn, ωn, and γn are the adjustable weights; and σ (xn) is the
activation function. An identification procedure using a DNN
is based on a comparison between the process output and
the computed output of the DNN. The goal is to adjust the
weights of the DNN to identically reflect the behaviour of
the real plant. To accomplish this, a quadratic error function
is defined and minimized using the quasi-Newton algorithm.
This technique is used for each subsystem of the plant. For
brevity, only the reactor is considered here. To identify the
reactor, data from the rod speed (vrd) and the reactor power
(Pn) are collected for training the DNN. In total, 3,000 data
points are collected and split into two sets of equal length
for training and validation. For training purposes, the data
are scaled to the range of [-1;1]. The best model obtained is
a second order. The trajectories of the estimated output (x1)
are shown in Fig. 2, and the DNN model obtained for the



reactor (DNNr) is represented by the state-space model in
(10). The DNNs obtained for the other subsystems are also
second order.

{
ẋ = f (x) + g (x)u
y = h (x) = x1

(10)

with f(x) representing the system function, and g(x) the
input mapping,

f (x) = −
[
β1 0
0 β2

]
︸ ︷︷ ︸

βr

[
x1

x2

]
+

[
ω11 ω12

ω21 ω22

]
︸ ︷︷ ︸

ωr

[
σ (x1)
σ (x2)

]
(11)

g (x) =

[
γ1
γ2

]
︸︷︷︸
γr

(12)

where x1 and x2 are the output and hidden states of DNNr,
respectively. βr, ωr, and γr are adjustable with respect to
DNNr. Their values are:

βr =

[
0.051 0
0 0.102

]
;ωr =

[
0.452 0.053
−0.14 0.053

]
;

γr =
[
0.115 −0.073

]T
; (13)
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(a) Reactor power training trajectories.
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(b) Reactor power validation trajectories.

Fig. 2: Measured and estimated reactor power signals

2) Input-Output Feedback Linearization
Based on the state-space model (10), the relative degree

r is found to be 1 because the control input appears in the
first derivative of y

y = h (x) = x1, (14)
ẏ = Lfh (x) + Lgh (x)u,

= −β1x1 + ω11σ (x1) + ω12σ (x2) + γ1u. (15)

In the above equations, Lfh(x) stands for the Lie derivative
of h(x) with respect to f(x)

Lfh(x) =
∂h(x)

∂x
f(x) (16)

and, likewise, the Lie derivative of h(x) with respect to g(x)

Lgh(x) =
∂h(x)

∂x
g(x) (17)

Considering r = 1, the system can be linearized by the
following control law [23]:

u =

v −
r∑

k=0

λkL
k
fh (x)

λrLgL
r−1
f h (x)

=
v − λ0x1 + λ1(β1x1 − ω11σ(x1)− ω12σ(x2))

λ1γ1
(18)

where v is the new input and λ̂k are arbitrary values. Finally,
a carefully tuned linear PID controller is added to improve
system performance.

IV. SIMULATION RESULTS

Simulations are performed to assess the designed con-
troller (FBL-DNN) on a nonlinear PWR plant. The plant is
assumed to be initially operating at a steady state. The pro-
posed controller is applied to each of the five control loops of
the system: the reactor, steam generator, pressurizer pressure
and level, and turbine loop. Here, external disturbances are
considered and applied to the control signal of each loop.
This disturbance signal can be expressed as follows [9]:

ζ(t) = ζ0sin(10
−1t) (19)

where ζ0 is the signal amplitude. The performance of the
FBL-DNN controller is compared with that of the classical
subspace model predictive control (SPC) strategy. Also, two
numerical measures are computed to analyze the control per-
formance: The percentage root mean square error (PRMSE)
analyzes the tracking performance, and the L2-norm (L2n)
is used to analyze the control effort. These are expressed as
follows:

PRMSE =

√√√√ 1

N

N∑
i=1

(yi − ri)
2 × 100% (20)

L2n =

√√√√ N∑
i=1

(ui)
2 (21)

A. Reactor Power Control Loop

The reactor power control loop is tested in the load-
following mode of operation in the presence of the distur-
bance ζ(t), with a magnitude ζ0 = 10−1 that is injected
into the rod speed. The performance of the controllers for
the reactor loop is shown in Fig. 3, and the reactor power
variation is shown in Fig. 3a. The power demand level



imposed is described as follows: the plant is initially assumed
to be at full power. The demand is maintained at full power
for 200 s, then brought down to 0.8 fractional full power
(FFP) in 100 s, maintained at 0.8 FFP for 300 s, and finally,
it is brought back to its initial value. It can be seen that FBL-
DNN tracks the reference smoothly and accurately despite
the disturbance. The classic SPC is also able to follow the
desired reference; however, it presents sustained oscillations
around the set-point. The control rod speed and reactivity
variations are displayed in Fig. 3b and 3c, respectively. The
effect of the disturbances can also be seen on the control
rod speed for the SPC controller. FBL-DNN deals with the
disturbances better than the classical SPC. Table I presents
the values of PRMSE and L2n measures that are computed
to evaluate the performance of the controllers. It can be seen
that the PRMSE value of FBL-DNN is lower than that of
the SPC controller. The PRMSE of FBL-DNN is, indeed,
half an order of magnitude lower than the classical SPC.
Both controllers exert more or less similar control efforts
with respect to L2n.

B. Steam Generator Control Loop

In this study, performance of the proposed controller is
tested for a reference change in the steam pressure in the
presence of the disturbance ζ(t) with a magnitude ζ0 =
10−1. The latter is injected into the control input. The steam
pressure demand is initially at 7.3 MPa. It is changed to
7.33 MPa in 100 s, maintained at 7.33 MPa for 200 s, then
it returns to its initial value. Fig. 4 depicts the performance
of the two controllers, and Fig. 4a shows the steam pressure
variation. It can be seen that FBL-DNN tracks the set-point
with good accuracy, whereas sustained oscillations can be
seen for the classical SPC. The control signal response is
shown in Fig. 4b. It is clear that the classical SPC spends
more control energy than FBL-DNN. In Table I, it can be
noticed that FBL-DNN has better tracking accuracy with
minimum PRMSE. The L2n value also shows that the FBL-
DNN controller exerts less control effort than that of the
classical SPC.

C. Pressurizer Control Loop

1) Pressurizer Pressure Loop
The pressurizer pressure is regulated by controlling a bank

of heaters. The controllers are evaluated for a reference
change in the pressurizer pressure under disturbances. The
disturbance ζ(t) with an amplitude of ζ0 = 10 is injected into
the heater input. The pressure demand is initally at 15.41
Mpa. In 200 s, it is changed to 15.46 Mpa and maintained
there. The performance of the controllers is shown in Fig. 5,
and the variation of the pressurizer pressure is displayed in
Fig. 5a. It can be seen that both controllers are able to follow
the reference trajectory, but it is noticeable that the classical
SPC is affected by the disturbances. In fact, it presents
an overshoot ratio of 2% that is followed by sustained
oscillations around the set-point. The control signal variation
is shown in Fig. 5b. The disturbances can be clearly seen in
the control input for the classical SPC, whereas FBL-DNN
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Fig. 3: Evolution of reactor power signals during the load-following
mode.

is able to achieve smooth control. Table I shows that the
PRMSE is lower for FBL-DNN than for the classical SPC.
The PRMSE of FBL-DNN is three orders of magnitude lower
than that of the classical SPC. L2n values also show that
the classical SPC exerts slightly less control effort than the
proposed strategy but fails at dealing with the disturbances.

2) Pressurizer Level Control Loop
The control of the pressurizer level aims to maintain

the water level of the reactor coolant. The performance
of the controllers is evaluated for a reference change in
the pressurizer level under the disturbance ζ(t) with an
amplitude of ζ0 = 10. The performance of the pressurizer
level controller is shown in Fig. 6, with the level and control
signal responses shown in Fig. 6a and Fig. 6b, respectively.
It can be seen that the classical SPC is not able to reject
the disturbances as it follows the set-point with an overshoot
of 0.6% and is followed by hunting. Conversely, the FBL-
DNN controller has good reference tracking and is able of
handle the disturbances. From Table I, it is clear that FBL-
DNN performs better, given that its PRMSE is four orders
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Fig. 4: Evolution of steam generator signals for a set-point change
in secondary pressure
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Fig. 5: Evolution of pressurizer heater signals for a set-point change
in pressure

of magnitude lower than the classical SPC. FBL-DNN is
also found to exert less control effort in terms of L2n. The
proposed controller performs better with minimum control
effort.
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Fig. 6: Evolution of pressurizer level signals for a set-point change
in level

TABLE I: Comparison of the Control Techniques

Case Technique PRMSE L2n

Reactor SPC 1.562× 10−1 6.430× 101

FBL-DNN 1.304× 10−2 6.460× 101

Steam generator SPC 1.086× 10−3 9.070× 10−3

FBL-DNN 8.800× 10−4 8.970× 10−3

Pressurizer pressure SPC 2.075× 10−1 6.330× 104

FBL-DNN 3.070× 10−4 6.350× 104

Pressurizer level SPC 2.522× 10−1 2.360× 101

FBL-DNN 1.890× 10−5 2.355× 101

Turbine SPC 1.920× 10−2 1.180× 101

FBL-DNN 4.498× 10−3 1.190× 101

D. Turbine Control Loop

The performance of the control technique is tested for
a reference change in the turbine output under the distur-
bance ζ(t) with an amplitude ζ0 = 10−3. Fig. 7 shows the
performance obtained for the turbine control loop and Fig.
7 the variation of the turbine output. Both controllers are
able to track the set-point, however, the classical SPC has a
settling time of 378 s and settles with residual oscillations.
The control signal variation is shown in Fig.7b. The two
control strategies exert nearly the same control effort in terms
of L2n. The PRMSE value verifies the better accuracy of
the proposed controller over the classical SPC. Overall, the
two controllers produce similar control effort, but FBL-DNN
offers better robustness and accuracy.

V. CONCLUSION

A DNN-based FBL strategy is designed to control an
entire PWR. The nonlinear plant is linearized using the
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Fig. 7: Evolution of the turbine-speed signals for a set-point change
in demand power of the generator.

offline trained DNN and the FBL technique. A PID controller
is then applied to the linearized system to improve the
performance of the PWR plant. The proposed strategy has
been tested on the different loops of the PWR. Control
strategies for the reactor power, steam pressure, pressurizer
pressure and level, and turbine speed have been implemented
and validated. The simulation results verify that the proposed
controller offers good performance and improved robustness
under disturbances. The proposed technique is found to
perform better than the classical SPC controller.
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