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Abstract

Electricity produced and used in the residential sector is responsible for approximately 30% of the greenhouse gas
emissions (GHGE). Insulating houses and integrating renewable energy and storage resources are key for reducing
such emissions. However, it is not only a matter of installing renewable energy technologies but also of optimizing
the charging/discharging of the storage units. A number of optimization models have been proposed lately to ad-
dress this problem. However, they are often limited in several respects: (i) they often focus only on electricity bill
reduction, placing GHGE reduction on the backburner; (ii) they rarely propose hybrid-energy storage optimization
strategies considering thermal and storage heater units; (iii) they are often designed using Linear Programming
(LP) or metaheuristic techniques that are computational intensive, hampering their deployment on edge devices;
and (iv) they rarely evaluate how the model impacts on the battery lifespan. Given this state-of-affairs, the present
article compares two approaches, the first one proposing an innovative sliding grid carbon intensity threshold algo-
rithm developed as part of a European project named RED WoLF, the second one proposing an algorithm designed
based on LP. The comparison analysis is carried out based on two distinct real-life scenarios in France and UK.
Results show that both algorithms contribute to reduce GHGE compared to a solution without optimization logic
(between 10 to 25%), with a slight advantage for the LP algorithm. However, RED WoLF makes it possible to
reduce significantly the computational time (≈ 25 min for LP against ≈ 1 ms for RED WoLF) and to extend the
battery lifespan (4 years for LP against 12 years for RED WoLF).

Keywords: Greenhouse Gas Emission, Energy efficiency, Photovoltaics, Battery, Edge computing, Linear
Programming

1. Introduction

Globally, the residential sector accounts for a sub-
stantial part of the consumed energy and greenhouse
gas emission (GHGE) (Baek and Kim, 2020). Re-
ducing GHGE can be achieved by better insulating
houses and buildings, switching from polluting (al-
beit cheap) coal to natural gas or renewable energy
sources (Lazarus and van Asselt, 2018), and devel-
oping intelligent applications to efficiently integrate
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such renewables resources with flexible storage sys-
tems (Ahmed et al., 2021). Indeed, it is not only
a matter of installing renewable energy technologies
(e.g., PV array, wind or biomass), but also of opti-
mizing the charging/discharging of the storage units
(e.g., battery, thermal storage, electric vehicles, etc.)
(Al-Shahri et al., 2021).

A number of charging and discharging optimization
models of storage units have been proposed in the lit-
erature (Hannan et al., 2021). Although these models
may differ in terms of required infrastructure (e.g., dif-
ferent renewable energy sources, loads), targeted fit-
ness goals, they are often limited in three-respects.
First, they are often designed based on Linear Pro-
gramming (LP), which can quickly become complex
and time consuming with the increase in the number
of constraints and variables. Significant computation

requirements of LP can have negative environmen-
tal impacts due to computational energy consumption.
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Figure 1: Nanogrid main technological constituents

Heuristic methods to solve LP’s can combat the com-
putation issue, but the trade off is in solution quality
with heuristics providing sub-optimal solutions. Sec-
ond, they often focus on cost – electricity bill – re-
duction, placing environmental goals such as GHGE
reduction, maximization of the system’s lifespan, on
the backburner. Third, they often consider a single
storage unit (mostly Battery Energy Storage System -
BESS) and rarely propose hybrid-energy storage opti-
mization strategies (e.g., combining BESS with ther-
mal storage, storage heaters, etc.). Such limitations
have been stressed and discussed in the recent survey
published by Hannan et al. (2021). To overcome these
limitations, an innovative sliding grid carbon inten-
sity threshold approach, developed as part of a Euro-
pean project named RED WoLF1 (Rethink Electricity
Distribution Without Load Following), has been pre-
sented initially in (Shukhobodskiy and Colantuono,
2020), modified in (Ortiz et al., 2021) and extended
with (Wiesheu et al., 2021), which can act on any
dwelling. In the present article, the goal is to
study the extent to which RED WoLF outperforms
LP or heuristic-based algorithms in terms of GHGE
reduction efficiency, battery lifespan maximization,
and computational complexity. The latter (compu-
tational complexity) is of particular importance with
the advent of Edge Computing in the energy sec-
tor (Munir et al., 2019), which pushes the frontier
of computation applications away from centralized
nodes (Cloud) to the communication network’s ex-
tremes (Edge).

In section 2, a review of existing energy storage op-
timization strategies is carried out, based on which
research trends and gaps are discussed. Section 3
presents the RED WoLF system and underlying logic,
but also proposes an extension of the algorithm intro-
duced by Olivieri and McConky (2020) with the aim
of integrating PV energy resources into their model.

1https://www.nweurope.eu/projects/project-search/red-wolf-
rethink-electricity-distribution-without-load-following/

Both algorithms are evaluated and compared in sec-
tion 4 considering two real-life scenarios (houses)
from France and UK, the conclusion follows in sec-
tion 5. Overall, the present paper differs from our pre-
vious papers in several respects:

• first, an in-depth analysis and comparison be-
tween two approaches (rule-based vs. Linear
programming) aiming at reducing carbon emis-
sion in residential houses are carried out. To the
best of our knowledge, no study has ever con-
ducted such an analysis in the field of low green-
house gas emission houses.

• second, in order to allow for fair comparison be-
tween the two approaches, an extension of the
initial Olivieri’s model is proposed to integrate
PV systems;

• third, even if the prime objective is to reduce
CO2, an in-depth analysis and comparison analy-
sis of how the two models behave in terms of the
battery lifespan and computational time needed
to solve the problem are carried out.

2. Scope, Definition and Positioning

Section 2.1 gives the context of our contribution
focusing on the energy field. Section 2.2 discusses
how our research progresses the current state-of-the-
art.

2.1. Scope and Definition

The energy life cycle consists of several stages,
spanning from its generation and transmission to its
distribution and consumption (Saleem et al., 2019).
The present research falls within the scope of energy
management at the consumption stage, and more ex-
actly in residential nanogrids (Burmester et al., 2017).
Energy management in nanogrids usually consists of

four equipment categories, as depicted in Figure 1,
namely:
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• Electric Loads: referring to house equipment
that consume energy such as appliances, Electric
Vehicle (EV), HVAC equipment, etc.;

• Flexible & Shiftable Loads: referring to equip-
ment able to store energy for later use (incl., bat-
teries, storage heaters, water cylinders, or sta-
tionary electrical vehicles) or to shift consump-
tion from the peak of the utility provider’s de-
mand curve, when energy is most precious, to an-
other most appropriate time (e.g., by delaying the
start time of the washing machine or the charging
start time of the EV);

• Renewable energy sources: referring to energy
sources that can be regenerated and sustainably
utilized from nature including non-fossil energy
such as wind energy, solar energy, biomass en-
ergy, geothermal energy or kinetic ocean energy;

• Non-renewable energy sources: referring to en-
ergy sources that have finite supplies and can-
not be restored or regenerated in short periods of
time (incl., coal, natural gas, oil, nuclear energy).

Depending on the type of nanogrid architecture
(i.e., presence or not of renewable energy sources,
flexible loads, etc.) and the targeted objectives (e.g.,
reducing energy bills and/or GHGE and/or extending
device lifetimes, etc.), the Energy Management Sys-
tem (EMS) integrates different logics (Georgiou et al.,
2019), as reviewed and discussed in the next section.

2.2. Current state-of-affairs

This section presents an overview of the current
state-of-affairs, along with the trends and gaps in the
literature. The methodology applied for reviewing the
literature is detailed in Figure 2. Sources such as doc-
toral dissertations, master’s theses, textbooks and un-
published papers were ignored. A first filter, denoted
by (1) in Figure 2, has been applied, consisting in se-
lecting articles based on the abstract content. This led
us to keep 202 articles. A second filter, denoted by
(2), has then been applied to keep papers dealing with
energy storage optimization (147 articles were identi-
fied). A final third filter denoted by (3), was applied to
keep only papers proposing approaches at the residen-
tial level only. This led us to review 43 articles, which
have been classified in Table 1 based on the following
criteria/categories:

• Lifecycle phase: highlights whether the proposed
approach deals with an optimization problem at
the Design (D) phase (e.g., for battery sizing)
or at the Operational (O) one (i.e., for deciding
when to consume/store/release energy);

• Optimization goal(s): highlights what objec-
tive(s) is/are targeted by the proposed approach,

Keyword search: “Energy Management System”
Scientific Databases (Elsevier, Springer, IEEE, etc.)

(1)

Yes (202 articles)

(2)

Yes (147 articles)

(3)

Yes (43 articles)

Included in the review
analysis (see Table 1)

No

No

No

Rejected from the
review analysis

Figure 2: Literature review process

which are categorized as follows: (i) bill reduc-
tion; (ii) GHGE reduction; (iii) peak shaving;
(iv) sustainability; (v) grid independency; (vi)
fuel reduction;

• Energy storage: highlights what storage systems
are considered/used, which are categorized as
follows: (i) BESS (battery energy storage sys-
tem) to (ii) hydro, (iii) Electric Vehicle (EV), (iv)
thermal or heating, and (v) fuel cell storage. This
category also emphasizes whether the approach
takes advantage of (vi) shiftable loads;

• Energy production: highlights what production
systems are considered/used, which are catego-
rized as follows: (i) fossil fuel, (ii) electrical grid;
(iii) PV array; (iv) wind turbine;

• Method: highlights the type of methods used for
optimization: (i) Heuristic (H); (ii) Metaheuris-
tic (MH); (iii) Mathematical Programming (MP);
(iv) Rule-Based (RB); (v) Multi-Criteria Deci-
sion Attribute (MCDA).

A first interesting finding from this review is that
there is a similar proportion of articles dealing with
optimization problems at the design (D) phase and at
the operational (O) one. In the former (D), articles
mainly focus on optimizing the hardware constituents
(battery size, installation cost, self-consumption ca-

pabilities, etc.) as well as the equipment configu-
ration to meet the various possible objectives (e.g.,
total cost of the installation, environmental impact,
self-consumption). The HOMER (Hybrid Optimiza-
tion Model for Electric Renewable) software, devel-
oped by the National Renewable Energy Laboratory
(NREL), appears in several of these articles such as
(Fodhil et al., 2019), as it allows for simulating and
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Table 1: Classification of the scientific articles reviewed throughout Section
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Tooryan et al. (2020a) D ! ! ! ! ! ! ! ! ! ! ! ! MH
Tooryan et al. (2020b) D ! ! ! ! ! ! ! ! ! MH
Das et al. (2020) D ! ! ! ! ! ! ! MCDA
Yazan M. et al. (2019) D ! ! ! MH
Awan et al. (2019) D ! ! ! ! ! ! ! ! MH
Ashraf et al. (2020) D ! ! ! MH
Awan (2019) D ! ! ! ! ! ! ! H
Fodhil et al. (2019) D ! ! ! ! ! ! MH
Fonseca et al. (2021) D ! ! ! ! ! ! ! ! MP
Ayse Fidan and Muhsin (2020) D ! ! ! MH
Bingham et al. (2019) D ! ! ! ! ! MH
Salehi et al. (2019) D ! ! ! ! ! ! ! RB
Garcı́a-Vera et al. (2020) D ! ! ! ! ! ! MH
Aziz et al. (2019) D ! ! ! ! ! RB, H
Pandžić (2018) D ! ! ! MP
O’Shaughnessy et al. (2018) D ! ! ! ! H
Nguyen et al. (2014) D ! ! ! MP
Borra and Debnath (2019) D ! ! ! MH
Arévalo et al. (2020) D RB
Bhayo et al. (2020) D ! ! ! MH
Haidar et al. (2018) O ! ! ! ! ! MP
Mahmud et al. (2018) O ! ! ! ! ! ! RB
Liu et al. (2020) O ! ! ! ! ! ! RB
Nagapurkar and Smith (2019) O ! ! ! ! ! ! ! ! MH
Olivieri and McConky (2020) O ! ! ! ! MP
Schram et al. (2020) O ! ! ! ! ! ! H
Stepaniuk et al. (2018) O ! ! ! ! ! ! ! RB
Terlouw et al. (2019a) O ! ! ! ! ! ! MP
Terlouw et al. (2019b) O ! ! ! ! ! ! ! ! MP
Moradi et al. (2016) O ! ! ! ! ! ! ! MP
Nottrott et al. (2013) O ! ! ! ! ! ! MP
Yadav et al. (2018) O ! ! ! ! MP
Mulleriyawage and Shen (2020) O ! ! ! ! ! ! MP
Litjens et al. (2018) O ! ! ! ! ! ! RB
Adefarati et al. (2019) O ! ! ! ! ! ! MH
Aziz et al. (2019) O ! ! ! ! ! RB, H
Garcı́a-Triviño et al. (2016) O ! ! ! ! ! ! MH
Marzband et al. (2016) O ! ! ! ! ! MH
Marzband et al. (2017) O ! ! ! ! ! ! MP
González-Briones et al. (2018) O ! ! ! RB
Luo et al. (2020) O ! ! ! ! ! ! ! MH
Shukhobodskiy and Colantuono
(2020); Ortiz et al. (2021)

O ! ! ! ! ! ! ! ! RB

Auñón-Hidalgo et al. (2021) O ! ! ! ! ! ! ! RB
Georgiou et al. (2020a) O ! ! ! ! ! ! MP
Georgiou et al. (2020b) O ! ! ! ! ! ! MP,MH
Zhang et al. (2012) O ! ! ! ! ! ! ! MCDA

39 27 2 18 20 5 3 38 2 2 5 6 18 28 31 14

analyzing different types of renewable energy infras-
tructures. Although our article focuses on the oper-
ational phase (optimizing energy storage over time),
our review evidences that optimization also plays a
key role at the design phase.

Regarding the articles at the operational (O) phase,
most of the literature focuses on optimizing charg-
ing/discharging cycles of the energy storage systems
to shift the consumption from peak to off-peak hours.
As evidenced in Table 1, all the reviewed articles

adopt a multi-objective optimization model, aiming
at first – in 85% of the reviewed articles – reduc-
ing the electricity bill, second – 54% – at reducing
GHGE, third – 46% – at improving sustainability
aspects (e.g., extending the battery lifespan) and/or
grid interdependency, while peak shaving and fuel re-
duction have been considered infrequently in the re-
viewed papers. The reason for this is twofold: (i)
fuel reduction and peak shaving are often formulated
as overarching objectives when there is no connexion
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Figure 3: Overview of the RED WoLF’s hardware architecture, along with the underlying power, data monitoring and control flows

to the electrical grid; and (ii) there are partly tackled
implicitly when addressing the GHGE reduction and
bill reduction problems (fuel reduction being mainly
linked to GHGE and peak shaving to financial costs)..
From an energy production and storage viewpoint, a
significant proportion of the reviewed articles – 65%

– consider a combination of electrical grid, PV and
BESS technologies, which can be explained by the
fact that it is often the most economical configuration,
as analyzed in (Murty and Kumar, 2020). Another in-
teresting point is that a couple of approaches propose
to combine different types of storage such as BESS
and EV (Mahmud et al., 2018), BESS and hydrogen
storage (Bhayo et al., 2020), or still BESS and thermal
storage (e.g., water cylinder) (Terlouw et al., 2019b),
which provides additional flexibility for energy man-
agement. Looking at the optimization techniques used
for problem-solving, most of the approaches – in
73% of the reviewed articles – rely on optimization
solvers or heuristic algorithms, which require a cer-
tain amount of time to find optimal solutions, often
growing exponentially along with the increase of con-
straints and variables. This constitutes a serious im-
pediment for the development of Edge Computing so-
lutions in the energy sector, as thoroughly discussed
by Feng et al. (2021).

Given the lack of approaches combining differ-
ent types of storage systems, and the fact that most
of them are computationally intensive, a new hy-
brid storage system for GHGE reduction in residential
houses/dwellings is being developed by the Interreg
NWE RED WoLF consortium, as originally presented
in (Shukhobodskiy and Colantuono, 2020). Section 3
recalls the infrastructure and logic underlying RED
WoLF, but also proposes an extension of the LP-
based algorithm introduced by Olivieri and McConky
(2020) with the aim to integrate PV into the model.

3. GHGE reduction systems

The hybrid-energy storage strategy proposed in
RED WoLF is detailed in section 3.1. The extension
of Olivieri’s model is then presented in section 3.2.

3.1. RED WoLF optimization system

Figure 3 gives an overview of the hardware,
electrical and communication architecture un-
derlying the RED WoLF system introduced in
(Shukhobodskiy and Colantuono, 2020) and further
in (Ortiz et al., 2021), highlighting the power flow,
monitoring flow (i.e., monitored devices) and control
flow ( controllable devices from the algorithm).
As a first category of equipment, home appliances
comprise all devices that consume electrical power
and do not have any storage capability (e.g., TV,
oven, light, etc.). It should be highlighted that, as
of today, RED WoLF does not consider shiftable
loads as an additional flexibility resource. From an
energy supply perspective, RED WoLF considers
two electrical power sources to supply the home
appliances, namely (i) the national electrical grid,
which is a non-renewable energy source as it has
a carbon intensity, and (ii) a PV array, which is
a renewable (non-polluting) source. In terms of
flexible energy-storage devices, RED WoLF pro-

poses a hybrid-energy storage system, combining
electrochemical and thermal storage systems, as
illustrated in Figure 3 (BESS, water cylinder and
storage heaters). Finally, from a control viewpoint,
the RED WoLF algorithm is executed in a PLC (see
Figure 3), generating commands at different times
to either store or draw a certain amount of power
in/from the above described hybrid-energy storage
system.

Based on the hardware constituents, several data are
collected for use by the RED WoLF algorithm. These
data can be categorized in three classes:
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Table 2: Variables used in the RED WoLF optimization system

Class Variable Units Description
In

p
u

t
&

In
te

rn
al

V
ar

ia
b

le
s

Real-time Acur kW Appliances present consumption
Real-time CO2cur gCO2/kWh Grid present CO2 load
Real-time PVcur kW PV present production
Real-time Blev kWh Battery state of charge
Real-time Clev kWh Cylinder state of charge
Real-time Hlev kWh Storage heater state of charge
Predicted Apre kW Appliances predicted consumption
Predicted PVpre kW PV predicted production
Predicted CO2pre gCO2/kWh Grid predicted CO2 load
Predicted DED kWh Appliances predicted consumption until the end of the day
Predicted GPU kW Grid predicted available mean drawable power
Static BC kWh Battery capacity
Static BImax kW Battery maximum admissible power
Static CImax kW Cylinder maximum admissible power
Static Cset kWh Cylinder setpoint
Static DImax kW Grid power drawing limit (set by utility provider)
Static HImax kW Storage heater maximum admissible power
Static Hset kWh Storage heater setpoint
N/A Cdem kW Cylinder present power demand
N/A Bdem kW Battery present power demand
N/A DImaxAPV kW Grid and PV power available for HSS
N/A Hdem kW Storage heater present power demand
N/A Pbal kW Remaining power after supplying appliances and HSS
N/A CO2thr gCO2/kWh Control CO2 threshold
N/A TI min Smallest time to supply HSS considering appliances

O
u

tp
u

t
V

ar
.

Real-time Bcon kW Power to be drawn from the battery
Real-time Bin j kW Power to be stored in the battery
Real-time Ccur kW Power to be stored in the water cylinder
Real-time Gcon kW Power to be drawn from the grid
Real-time Gin j kW Power to be injected to the grid
Real-time Hcur kW Power to be stored in the storage heater

i. Static parameter values: referring to fixed param-
eters such as manufacturers’ data (e.g., maximum
battery capacity);

ii. Real-time data values: referring to live data mon-
itored at the hardware layer (e.g., data coming
from smart meters, sensors in the battery, etc.);

iii. Predicted data values: referring to predicted data
such as predicted grid carbon intensities, pre-
dicted PV generation and house consumption.

Table 2 (column denoted by class) reports what sys-
tem variables belong to what class. It should be noted
that some system parameters are both predicted (us-
ing ML) and monitored in real-time (e.g., via sensors),
such as house appliance demand (respectively denoted
by Apre and Acur), the output power produced by PV
(PVpre, PVcur), or the grid carbon intensities (CO2cur,
CO2pre). Based on the input data, the RED WoLF al-
gorithm follows a two-step approach. First, a CO2

threshold applied on the (predicted) grid intensity sig-
nal is computed, which identifies when it is optimal to

draw energy from the grid to meet – at minimum – the
house demand. Based on this threshold, a rule-based
strategy is applied to decide the charging/discharging
actions to be executed. These two steps are further
described in the following paragraphs.

To compute the CO2 threshold, the average avail-
able electrical power to supply the thermal storage
system (GPU), the energy required to reach the set-
point until the end of the day (DED), the heater and
cylinder power demands (Hdem and Cdem) must be
computed, as respectively given from Eq. (1) to (4).

GPU = DImax −

∫ T

t

Apre(t)

(T − t)
dt − BImax (1)

DED =

∫ T

t

Apre(t)

60
dt +

∑

i=H,C

(idem − ilev) (2)

Hdem = HImax × Heavi(Hset − Hlev) (3)

Cdem = CImax × Heavi(Cset −Clev) (4)

Several system constraints and state variables are

6
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3h
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COb

2

5h2h

Figure 4: RED WoLF’s CO2 threshold computation example

used in this respect, such as the maximum charging
power of the battery, cylinder and heater (respectively
denoted by BImax, HImax, CImax), the maximum power
drawable from the grid (DImax), or still the current
level of charge of the heater and cylinder (Hlev and
Clev). Note that the Heaviside step function (Heavi)
is defined as True (1) if the input is greater than 0,
False (0) otherwise.

The minimum time length (TI) to charge equipment
is further computed from DE D, GPU , Hdem and Cdem,
as given in Eq. (5).

TI = max

(

Cdem −Clev

CImax
,

Hdem − Hlev

HImax
,

DED

GPU

)

(5)

The CO2 threshold (CO2thr), which identifies the
best intervals for drawing electricity from the grid, is
then computed using Eq. (7), CO2preS ort referring to
the CO2 prediction vector sorted in ascending order,
as given in Eq. (6).

CO2preS ort = sort(CO2pre) (6)

The ceil function used in Eq. (7) allows for getting
an integer value, which represents the drawing time
(in minutes) that is used as index in the sorted CO2

vector to determine the CO2 threshold.

CO2thr = CO2preS ort (%TI&) (7)

Figure 4 illustrates the output when applying the
above equations. Assuming a TI equals to 7h, the
threshold that meets this charging duration should
be identified. The first threshold example (denoted
by COa

2 in Figure 4) does not meet this require-
ment, while the second threshold (COb

2) does, re-
sulting in two “low CO2 periods”: [8am; 10am] and
[2pm; 6pm]. Based on the computed threshold, a spe-
cific rule-based logic is applied, which is detailed in
the form of a flowchart in Figure 5 using the UML ac-
tivity diagram formalism. This flowchart shows that
two parts are run in parallel. On the first part (see
frame denoted by “CO2 threshold computation” in
Figure 5), the steps refer to the reading of sensor data
needed to compute the CO2 threshold (CO2thr). Such
data is either locally accessed (e.g., state of charge
of the battery) or remotely (e.g., appliance consump-
tion forecasts or grid carbon intensity forecasts that

Figure 5: Overall RED WoLF logic
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Table 3: Variables used in the Olivieri’s optimization system (Olivieri and McConky, 2020)

Class Var. Unit Description

In
p

u
t

&
In

te
rn

al
V

ar
ia

b
le

s

Predicted di kW Power required to supply appliances over the time interval i
Predicted Mi gCO2/kWh Grid CO2 load over the time interval i

Predicted pvi kW Power provided by PV over the time interval i

Real-time Cap kWh BESS max capacity
N/A ppvi kW Power from PV used by appliances over the time interval i

N/A bpvi kW Power from PV injected to BESS over the time interval i

N/A gpvi kW Power from PV sent back to grid over the time interval i
N/A CO2i gCO2 CO2 emitted over the time interval i

N/A SOCi kWh BESS state of charge read over the time interval i
N/A I hrs Length of each time interval
N/A T N/A Set of discrete time intervals
N/A inef % Inefficiency factor (0 to 1)

O
u

t. N/A pci kW Power charged in BESS over interval i

N/A pdi kW Power discharged from BESS over i

are computed at the Cloud level). On the second part
(see frame denoted by “Actions computation” in Fig-
ure 5), the steps refer to the decisions about the actions
to be executed in terms of energy storage and release
depending on the threshold value (CO2thr), namely:

1. if CO2cur < CO2thr, appliances and the hybrid-
energy storage system are powered by the grid
and PV array;

2. if CO2cur > CO2thr but PV is sufficient, appli-
ances are powered through PV and extra-power
(if any) is used to load the hybrid-energy storage
system;

3. if CO2cur > CO2thr and PV is insufficient, appli-
ances are powered through PV; if not sufficient,
through battery; if not yet sufficient, then through
the grid.

It should be noted that the RED WoLF algorithm
is inspired by the ARIMA (Autoregressive Integrated
Moving Average) model (Siami-Namini et al., 2018),
which in our case (considering the input data of our
problem) adds non-linearity and other levels of com-
plexity to the system. This is due to RED WoLF al-
gorithm takes as the input the prediction values and
current state of storage reservoirs, however the execu-
tion is done on current physical state of the system.

3.2. Olivieri’s optimization system

OIivieri’s optimization model considers the in-
frastructure detailed in Figure 6, the algorithm be-
ing run on a smart meter that controls the battery
(Olivieri and McConky, 2020). The model uses a LP
solver to reduce electricity bill, carbon emission, or
both simultaneously. For a fair comparison with RED
WoLF, only the model proposed for carbon emission
reduction is considered in this study. This model is
detailed through Eq. (8) to (17), which minimizes the

Figure 6: Olivieri’s hardware architecture

CO2 emissions produced to meet the household’s en-
ergy demand during a time interval denoted by i.

min Emissions =
∑

i∈T

CO2i (8)

subject to

CO2i = (di + pci − pdi − ppvi) · I · Mi,∀i ∈ T (9)

pci ≥ 0,∀i ∈ T (10)

pdi ≥ 0,∀i ∈ T (11)

(pci + bpvi) ≤ Cap/2.7,∀i ∈ T (12)

S OCi =

i
∑

t=0

(pct + bpvi) · ine f · I

−

i
∑

t=0

pdt · I,∀i ∈ T (13)

S OCi ≥ 0,∀i ∈ T (14)

S OCi ≤ Cap,∀i ∈ T (15)

gpvi + ppvi + bpvi = pvi,∀i ∈ T (16)

gpvi, ppvi, bpvi ≥ 0,∀i ∈ T (17)

CO2 emissions are computed using Eq. 9, while361
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Figure 7: Comparison Infrastructure

Eq. (10) and (11) define the BESS charging and dis-
charging constraints. Eq (12) represents the BESS
maximum capacity to store energy, while the BESS
state of charge (SOC) is computed using Eq. (13) to
(15). Olivieri’s model was slightly adapted to inte-
grate the PV system to the infrastructure2 for fair com-
parison with RED WoLF. Please note that the vari-
ables highlighted in bold in Eq. (8)to (17) represent
the extensions of Olivieri’s model in order to inte-
grate the solar production into the optimization model,
which was not proposed in the initial model; all vari-
ables being summarized in Table 3.

The complexity of Olivieri’s model is given through
Table 4, which provides information related to de-
cision variables and constraints for different model
sizes, which all consider 7 decision variables and
11 constraints per time period, as well as a time pe-
riod length of 1 min. Furthermore, Pyomo modeling
language with GLPK solver was used under the fol-
lowing configuration: 2,3 GHz Intel Core i7 quad core
with 32 Go RAM

4. Experimental evaluation

To evaluate the performance of RED WoLF, three
scenarios are defined and compared, as illustrated in
Figure 7. In the first scenario (denoted by “Baseline”
in Figure 7), the carbon footprint in terms of kg equiv-
alent CO2 emissions (denoted by kg eq. CO2 in the
rest of the paper) is computed for a given residential
house and a given energy consumption demand. As
energy supply sources, the considered house has a PV

2The average electricity consumption of the thermal heating and
hot water are computed (respectively being equal to 1.04 kW +

0,167 kW) and added to the total house demand.

Table 4: Complexity of Olivieri’s model related to decision vari-
ables and constraints for different model sizes (7 decision variables,
11 constraints per time period, period length of 1 min).

Horizon
(hours)

Total Time
Periods

Number of de-
cision variables

Number of
constraints

4 240 1680 2640
8 480 3360 5280
12 720 5040 7920
24 1440 10080 15840
36 2160 15120 23760
48 2880 20160 31680
60 3600 25200 39600
72 4320 30240 47520

installation and is connected to the grid, but it does392

not have any storage system nor optimization logic. In393

the second scenario (denoted by “Olivieri”), Olivieri’s394

optimization algorithm is implemented and compared395

against the baseline scenario. In the third scenario396

(denoted by “RED WoLF”), the RED WoLF hybrid-397

energy storage system is implemented and compared398

against the Baseline and Olivieri scenarios. Let us399

stress the fact that the comparison between RED400

WoLF or Olivieri’s algorithms is established on a fair401

basis, as the two algorithms consider similar input402

data (PV energy production, energy storage system403

connected to a battery, house electricity demand, grid404

carbon intensity) and seek to optimize the same crite-405

rion (i.e., carbon emission reduction). The other re-406

sults that will be compared in the rest of the study,407

such as electricity bills or battery lifespan correspond408

to side effects on other parameters.409

Section 4.1 presents the datasets used as inputs of410

the conducted experimental evaluation. Section 4.2411

presents the performance comparison analysis of the412

three scenarios.413
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Table 5: Datasets used as experimental inputs

Dataset Loc. Name Period URL

House demand
UK UKDALE Oct. (UKDALE, 2015)

FR IHEPCDS Oct. (IHEPCDS, 2010)

PV production
UK N/A Oct. (NREL, 2020)

FR N/A Oct. (Eur, 2020)

Grid carbon UK N/A Oct. (CIA, 2020)

intensity FR N/A Oct. (RTE, 2022)

Energy price
UK N/A N/A

(Statista, 2021)
FR N/A N/A

4.1. Experimental setup

As illustrated in Figure 7, the three scenarios are
going to be compared on the basis of three perfor-
mance indicators, namely (i) CO2 emissions: CO2

equivalent greenhouse gas emissions produced for
supplying house electrical power demand in kg eq.
CO2; (ii) Computational time: time needed to gen-
erate the recommended set of commands to be exe-
cuted; (iii) Battery lifespan: amount of time a battery
lasts until it needs to be replaced. In terms of input
data, four data sources have been considered:

1. Home consumption: the state-of-the-art UK-
DALE (UK Domestic Appliance-Level Elec-
tricity) and IHEPCDS (Individual Household
Electric Power Consumption Data Set) datasets
have been considered in this study, which pro-
vide real house consumption behaviors from
houses located in UK and France respectively
(Monacchi et al., 2014) (see Table 5 for further
details). The reason for considering these two
datasets is twofold: (i) as of the pilots (cur-
rently being setting up) of the RED WoLF project
are located in these two countries; (ii) these two
countries have different ways of generating elec-
tricity (nuclear in France, natural gas in UK),
which have direct impact on the grid’s carbon in-
tensity. This study considers the October month;

2. PV production: to the best of our knowledge,
there is no platform in France providing real-
time PV production, while in UK the NREL (Na-
tional Renewable Energy Laboratory) web plat-
form makes available both historical and pre-
dicted PV datasets. A simulator developed by the
European Commission (cf., Table 5) nonetheless
shows that there is a difference of 15.4% between
UK and France (in favor of France). On this ba-
sis, the PV production dataset in UK (obtained
via the NREL platform) was increased by 15.4%
for the French experiments;

3. Grid carbon intensity: two distinct web plat-
forms making carbon intensity available for
France and UK were used, namely RTE for
France and Carbon Intensity for UK (cf., Ta-
ble 5).
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Figure 8: Overview of the Computational Time and associated per-
formance in terms of total emitted CO2 with Olivieri’s system

For a fair and consistent comparison between sce-458

narios, the energy demands of the Baseline and459

Olivieri models have been slightly adjusted to include460

the power used for space and water heating in the RED461

WoLF scenario. It should also be noted that the time462

interval i in Olivieri’s algorithm has been set to 1 min463

in our experiments.464

4.2. Experimental results465

In this section, the three scenarios/algorithms466

(Baseline vs. Olivieri vs. RED WoLF) are compared467

over a 1-month period (October). However, before468

doing so, a pre-study is conducted in section 4.2.1469

to determine the prediction horizon length to run the470

algorithms. Then, a comparison of the Olivieri and471

RED WoLF algorithms over three specific days is then472

conducted in section 4.2.2 to understand the behav-473

ior of each algorithm with respect to the different in-474

puts, before conducting the 1-month comparison anal-475

ysis in section 4.2.3. Finally, in section 4.2.4, we an-476

alyze to what extent a battery with different charac-477

teristics (different capacities, maximum power intake)478

may impact on the algorithm performance, along with479

what would be the best configuration (technology) to480

be selected.481

4.2.1. Prediction horizon length determination482

Due to the low complexity in computing the thresh-483

old in RED WoLF, the scheduling process is al-484

most instantaneous (< 1 ms), as thoroughly ana-485

lyzed in (Shukhobodskiy et al., 2021). In opposition,486

Olivieri’s algorithm processing time varies exponen-487

tially according to the length of the prediction hori-488

zon. Figure 8 provides clear evidence of such an ex-489

ponential behavior, showing that the longer the pre-490

diction horizon length (x-axis), the more exponen-491

tial Olivieri’s algorithm processing time (y-axis). In-492

deed, optimizing the energy storage and release with493

a 4h-prediction time window requires less than one494

second, while this processing time reaches 6h with495

a 72h-prediction time window (cf., Figure 8). As496

a complementary information, the total CO2 emitted497
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(c) Grid carbon intensity evolution, along with a representation of when and what proportion of power the RED WoLF and Olivieri systems
should be drawn from the electrical grid. In this scenario, RED WoLF draws power from the grid in an intensive manner from 0:00 (midnight)
to ≈3:30am (i.e., drawing power in a range of ≥ 7kW, as indicated in the Legend frame), while Olivieri’s algorithm generates charging orders
all over the day (i.e., in a continuous manner) in a less intensive manner (in a range of [0; 3.5kW[). To understand the impact of such behavior
on the battery state of charge, the reader shall refer to Figures 9(a) and 9(b).

Figure 9: October 3rd - One day analysis of how RED WoLF and Olivieri systems behave with respect to the different inputs

with the Olivieri’s algorithm over the October month498

is depicted in Figure 8, showing that beyond a 24h-499

prediction time window, the optimization does not500

lead to better performance. As a consequence, a 24h-501

prediction time window is chosen for running the ex-502

periments conducted in the rest of the paper, bear-503

ing in mind that in this configuration Olivieri requires504

≈ 25 min for generating the optimal solution against505

< 1 ms with RED WoLF.506

4.2.2. Daily analysis507

Before presenting the monthly comparison analy-508

sis, which is the subject of section 4.2.3, we suggest509

to analyze how RED WoLF and Olivieri algorithms510

behave with respect to the system inputs considering511

three specific days. Let us note that, in the conducted512

experiments, the battery capacity for both algorithms513

is 6.5 kWh and the maximum intake/outtake power is514

4.2 kW. Furthermore, two assumptions differ between515

RED WoLF and Olivieri: (i) maximum grid intake:516

RED WoLF defines a constraint defining the maxi-517

mum power that can be drawn from the grid by the518

sum of house consumption minus the power generated519

by the PV system. This limit is fixed by the energy520

provider and set to 9 kW. Olivieri’s algorithm does521

not include such a constraint; (ii) Thermal charging522

using battery: In Olivieri, space heating and hot wa-523

ter needs are considered as appliances and therefore524

could be supplied by the battery, unlike RED WoLF525

where thermal reservoir must be supplied by the grid526

or PV unit sources (this constraint has been added to527

avoid energy losses during energy conversion). This is528

why in Figure 9(b) the appliance demand in Olivieri529

is greater than in RED WoLF (cf., Figure 9(a)).530

October 3rd: Power exchanges occuring between531

the grid, appliances, PV arrays and the hybrid en-532

ergy storage system when using the RED WoLF and533

Olivieri strategies are plotted in Figures 9(a) and 9(b)534

respectively. A complementary plot of the amount of535

grid carbon intensity over that day is given in Fig-536

ure 9(c), along with the periods when RED WoLF537

and Olivieri algorithms draw power from the grid (a538

color code being used to indicate the intensity of con-539

sumption, as detailed in the “Legend” of Figure 9). A540

first reading of the graphs shows a different behavior541

of the battery management system. In RED WoLF,542

the battery has a constantly high level of charge (see543

Figure 9(a)), whereas the battery level is highly vari-544

able when using Olivieri’s algorithm, going from fully545

charged to empty several times over that day (see Fig-546

ure 9(b)). It can also be noted that the battery is547

mainly charged by the local PV production in both548

cases, which can be partly explained by the grid car-549

bon intensity that is consistently high that day (above550

200g eq. CO2 per kWh). From a more detailed exam-551

ination of those plots, it can be noted that:552

• during the night, batteries are fully charged in553

both algorithms as the grid carbon intensity is554
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(c) Grid carbon intensity evolution, along with a representation of when RED WoLF and Olivieri systems draw power from the electrical grid

Figure 10: October 6th - One day analysis of how RED WoLF and Olivieri systems behave with respect to the different inputs

lower – even if it remains high – than the rest555

of the day. Figure 9(b) shows that RED WoLF556

draws power from the grid in an intensive manner557

to charge all storage systems (i.e., battery, water558

cylinder and storage heaters);559

• in the morning (likely because residents get up),560

batteries are discharged in both models. In561

Olivieri, the battery is almost completely dis-562

charged, which is mostly due to the fact that it is563

not possible to store energy in the heater and/or564

water cylinder, unlike RED WoLF in which both565

storage systems have been charged during the566

night (at the same time as the battery);567

• batteries are then charged during sunshine hours.568

However, as the battery’s SOC in RED WoLF569

is always high, the battery quickly becomes full570

and solar energy produced locally is redirected to571

the grid. For that day 62% of the PV production572

in RED WoLF (eq. to 8, 4 kWh) is fed back to573

the grid, while all the PV production is adsorbed574

by the battery with Olivieri;575

• at the end of the day, when the house electricity576

demand increases, the RED WoLF system is self-577

sufficient (operating solely on its battery), while578

Olivieri’s schedule draws power from the grid.579

In this respect, RED WoLF, which keeps a high580

battery’s SOC, has an advantage in the event of a581

grid failure or disconnection;582

Let’s remind ourselves that the primary objective583

of RED WoLF and Olivieri is to reduce GHGE. For584

this specific day (Oct. 3rd), the latter (Olivieri) pro-585

vides significantly lower emissions than RED WoLF586

as it makes use of the whole PV production, unlike587

RED WoLF that exports part of that production to the588

grid. In numerical terms, Olivieri emits half as much589

GHGE (3.2 kg eq. CO2) than RED WoLF (6.9 kg eq.590

CO2). Another aspect that can be analyzed is the wear591

and tear of the battery as a result of charge/discharge592

cycles, which has a direct impact on the battery life-593

time (Karamov and Suslov, 2021). Even if the max-594

imization of the battery lifespan is not defined as an595

objective in RED WoLF or Olivieri, it is interesting596

to be analyzed, as replacing a battery has a threefold597

environmental impact: (i) producing new batteries re-598

sults in depleting the earth’s resources; (ii) managing599

battery disposal today is a concern; (iii) increasing600

costs due to the battery purchase leads to social con-601

cerns. Overall, Olivieri results in twice more charg-602

ing/discharging phases3 (10 in total) than RED WoLF603

(5 in total).604

October 6th: A second day is analyzed in Figure 10605

in order to see whether a similar energy management606

behavior is observed. It can be first observed that un-607

like Oct. 3rd, the grid carbon intensity signal strongly608

varies over time (see Figure 10(c)), although it is glob-609

ally cleaner than the signal of Oct. 3rd (see Fig-610

ure 9(c)). Overall, the behavior of the house when611

3A distinction between charge/discharge phases and cycles is
made. One cycle is when we have charged or discharged an amount
that equals 100% of the battery’s capacity, but not necessarily all
from one charge, while a phase refers to cases where we switch
from charging to discharging command, or vice-versa.
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(c) Grid carbon intensity evolution, along with a representation of when RED WoLF and Olivieri systems draw power from the electrical grid

Figure 11: October 5th - One day analysis of how RED WoLF and Olivieri systems behave with respect to the different inputs

using RED WoLF and Olivieri (see Figures 10(a) and612

10(b)) is quite similar to the one analyzed in Oct. 3rd613

(battery’s SOC remaining high and part of the PV pro-614

duction – 8,7 kWh – being fed back to the grid). One615

difference lies in the fact that RED WoLF is no longer616

self-sufficient in the morning (from 8am to 10am), as617

it draws power from the grid to first charge the bat-618

tery and then power the appliances (cf. Figure 10(c)).619

The reason for this is twofold: (i) the carbon grid in-620

tensity is low during that period (≈ 100 g eq. CO2),621

and (ii) RED WoLF predicts that the intensity will622

significantly increase within the following 12h. With623

Olivieri, the charging pattern differs from Oct. 3rd;624

the battery starts with a half SOC, while it was full in625

Oct. 3rd. In a similar way as RED WoLF, Olivieri’s626

algorithm takes the opportunity to both satisfy the627

house electricity demand and charge the battery when628

the carbon intensity is low (until 4 pm). From this629

time onwards, the battery in Olivieri becomes the only630

source of supply until 8 pm (when the grid electricity631

becomes cleaner again). As on Oct. 3rd, Olivieri’s632

system uses all the PV production, while RED WoLF633

re-injects part of this production into the grid. Re-634

garding now the number of charge/discharge phases,635

5 phases are identified in RED WoLF against 12 in636

Olivieri, which is mostly due to the greater variability637

in the carbon intensity.638

Day 5 of October: The grid carbon intensity of this639

third day is given in Figure 11(c), which is relatively640

high at the beginning of the day, and then progres-641

sively decreases. Looking at Figures 11(a) and 11(b),642

it can be observed that the RED WoLF is charging643

the storage units straight at the beginning of the day,644

which, combined with the PV production, is sufficient645

to meet the house electricity demand without consum-646

ing power from the grid, nor exporting surplus elec-647

tricity. With Olivieri, several periods of battery charg-648

ing/discharging can be observed. In total, 2 charg-649

ing/discharging cycles are identified with RED WoLF,650

against 8 with Olivieri, where the total carbon emis-651

sion for that day is estimated to 4.1kg eq. CO2 for652

Olivieri, against 1.8kg eq. CO2 for RED WoLF. The653

main reason leading to this result is the the non sup-654

port (in Olivieri) of a hybrid-storage system (i.e., con-655

sidering the water cylinder and storage heaters as stor-656

age units).657

4.2.3. One Month analysis658

Figures 12(a) and 12(b) provide, for each day in659

October, the difference in CO2 between the RED660

WoLF and Olivieri algorithms for France and UK661

datasets respectively; a positive value indicating that662

RED WoLF outperforms Olivieri, and vice-versa. It663

can be observed in Figure 12(a) that there is no clear664

outperforming algorithm and the difference in results665

is small (0.3 kg eq. CO2 at most). This difference666

can be explained by the fact that France uses nuclear667

power for most of its electricity, which has a very low668

GHGE rate compared with UK. In the case of UK (see669

Figure 12(b)), Olivieri’s algorithm outperforms RED670

WoLF in ≈ 60% of the time. Nevertheless, in order to671

gain a full and complete comparison, other informa-672

tion such as the battery lifespan, the amount of energy673

redirected to the grid ( ignored into account in Fig-674
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Figure 12: RED WoLF vs. Olivieri: a positive value indicating that RED WoLF outperforms Olivieri and vice-versa.

Table 6: Summary of key results obtained with the Baseline, RED WoLF and Olivieri systems over the whole month of October

kWh from
Grid

Elec. bill
(euros)

kg eq. CO2

from Grid
Local PV
usage (%)

PV to Grid
(kWh)

Nb. of
Cycles

Battery
life-span
(months)

Comput.
Time

FR
Baseline 1454 257 N/A 100 N/A N/A N/A N/A
RED WoLF 1344 237 39 86 50.6 71 78 < 1ms
Olivieri 1296 227 40 100 0 190 31 25min

UK
Baseline 1042 221 171 100 N/A N/A N/A N/A
RED WoLF 935 198 146 58 137.4 43 139 < 1ms
Olivieri 806 142 140 100 0 133 45 23min

ure 12), or still the computational complexity of each675

algorithm. Table 6 provides such complementary in-676

formation for both scenarios (France and UK).677

Firstly, let us compare the results obtained with678

RED WoLF and Olivieri with the Baseline scenario679

(cf., Figure 7). Table 6 reports that in both cases680

(France and UK), the monthly CO2 emissions is re-681

duced by 10% (France) and 30% (UK) when imple-682

menting RED WoLF’s or Olivieri’s system, with a683

slight advantage for the latter. However, as previously684

mentioned, this result does not take into considera-685

tion the PV electricity re-directed to the grid. Table 6686

reports that Olivieri is consuming 100% of the lo-687

cal PV production, while RED WoLF consumes only688

86% (France) and 58% (UK). Although it is preferable689

to consume locally the electricity (to avoid electricity690

losses during transmission), the results given and dis-691

cussed in Figure 12 need to be put into perspective.692

Secondly, looking at the electricity bills, Olivieri693

outperforms RED WoLF with a difference of more694

than 50€ in the UK scenario and 10€ in the French695

one. This can be explained by the fact that Olivieri696

consumes all the local PV production, unlike RED697

WoLF that re-injects part of the production to the grid,698

as previously discussed. Here again, some revenue699

could be generated in that case, which has not been700

taken into account in this study. Although the objec-701

tive of reducing the electricity bill has not been de-702

fined as the prime objective in RED WoLF, nor in703

Olivieri (the focus being given to GHGE reduction), it704

can be noted that ecology considerations are not sys-705

temically in contradiction with financial ones.706

Thirdly, the total number of charge/discharge cy-707

cles of the battery over the month is calculated using708

the definition of a cycle, which consists of accumu-709

lating the energy charged in the battery by dividing710

it by its maximum capacity (in this case the battery711

has a capacity of 6.5 kwh), the same calculation be-712

ing done for the discharge. Summing up the charge713

and discharge cycles, the values reported in Table 6714

are obtained. It can be noted that RED WoLF reduces715

by 60% (France) and 50% (UK) the number of cycles716

compared with Olivieri. Considering now the battery717

specification, which is expected to operate for a total718

of 6000 cycles, it can be concluded that the battery719

will likely need to be replaced after 3 to 4 years with720

Olivieri, against 7 to 12 years with RED WoLF.721

Fourthly, it is important to remind ourselves that722

the RED WoLF’s optimization is almost instantaneous723

(less than 1ms), while Olivieri’s optimization takes724

about 25 min. This is not negligible as it has an indi-725

rect impact on the overall system carbon footprint (the726

higher the algorithm complexity, the heavier the com-727

putational load). Furthermore, if we consider extend-728

ing Olivieri’s model to integrate other storage units729

such as storage heaters, water cylinder, or any other730

type of storage unit, this would result in an even larger731

complexity. Finally, with the advent of the Edge Com-732

puting, RED WoLF algorithm turns to be more ap-733

propriate than Olivieri to be deployed on devices that734
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Table 7: Total CO2 emitted over the month of October using batteries of different capacities/sizes

Bluetti LG3.3 LG6.5 Tesla
CO2 PV to Grid CO2 PV to Grid CO2 PV to Grid CO2 PV to Grid

kg eq. CO2 kWh kg eq. CO2 kWh kg eq. CO2 kWh kg eq. CO2 kWh

FR
RED WoLF 42.13 140.16 40.50 138.47 39.48 137.41 37.70 137.73
Olivieri 42.53 17.87 41.28 0.59 40.04 0 40.04 0

UK
RED WoLF 152.80 90.38 147.34 61.33 146.21 50.60 146.32 44.23
Olivieri 157.57 12.96 148.57 3.08 140.79 0 128.35 0

have limited computational capabilities such as smart735

meters.736

4.2.4. Impact of different batteries on the optimiza-737

tion performance738

To study the impact of how a battery with differ-739

ent characteristics may impact on the algorithm per-740

formance, we consider four different technologies to-741

day available on the market, namely Bluetti, LG3.3,742

LG6.5 and Tesla, whose respective characteristics are743

summarized in Table 8 (battery capacity and maxi-744

mum power intake). Table 7 reports the total CO2745

emission (in kg eq. CO2) and power re-injected to the746

grid (in kWh) obtained when running the RED WoLF747

and Olivieri algorithms with these four batteries.748

Table 8: Battery products (from the market) analyzed

Bluetti LG3.3 LG6.5 Tesla

BImax (kW) 1 3.3 4.2 7
BC (kWh) 1.5 3.3 6.5 13.5

In the UK scenario, It can be noted that increas-749

ing the size and power intake of the battery leads to750

a significant reduction of CO2 emission in Olivieri,751

which is not true for RED WoLF. The reason for752

this is highly correlated to the amount of energy re-753

injected into the grid, as Olivieri is better than RED754

WoLF in maximizing the consumption/storage of lo-755

cal PV production (cf., PV to grid values in Table 8).756

Interestingly, RED WoLF outperforms Olivieri when757

using the smallest (Bluetti) battery, while the trend758

is reversed with the three other battery technologies.759

Overall, the LG3.3 is sufficient in RED WoLF, as760

larger batteries do not lead to a substantial improve-761

ment in CO2 reduction, while the bigger the battery762

the better in Olivieri. This obviously has a financial763

impact.764

In the FR scenario, RED WoLF always outperforms765

Olivieri, adding that the total CO2 emission decreases766

along with the increase of the battery size, which does767

not apply for Olivieri. One reason for this lies in768

the RED WoLF logic that gives as much importance769

to low-carbon grid periods as local PV production,770

which may prove to be an effective strategy when the771

national grid is of low carbon, as is the case in France.772

Overall, this study suggests that the choice of given773

strategy/algorithm and of a battery technology may774

depend on the country’s strategic position in energy775

geopolitics.776

5. Conclusion & Research implications777

5.1. A European willingness to primarily focus on778

GHGE reduction779

Climate change and the continuous and rapid rise in780

temperature are forcing international political bodies781

to focus on reducing GHGE to save the planet. The782

housing sector is heavily contributing to global warm-783

ing. Gone are the days where everyone tries to find784

optimal solutions to reduce financial costs, whatever785

the environmental cost. This is in line with the com-786

mitments of the signatory countries of the Paris con-787

ventions (COP21), whose objective is to reduce car-788

bon emissions from various human activities by 2030789

(housing being one of the key focus).790

The research conducted in this article – which is791

part of the RED WoLF Interreg NWE project – directly792

addresses the Interreg NWE’s Low Carbon” Priority4,793

which is why the proposed solution is an all-carbon794

optimisation, while being aware that other factors can795

have an impact. In other terms, the carbon aspect is796

considered as a restrictive objective, which is aligned797

with a political will of the EU (COP21).798

5.2. Comparison of two GHGE reduction models799

The current state-of-affairs reviewed in this paper800

brings evidence that most of today’s energy manage-801

ment systems primarily focus on electricity bill re-802

duction, placing GHGE reduction on the backburner,803

they rarely propose hybrid-energy storage optimiza-804

tion strategies, neither evaluate how the proposed805

strategy impacts on the computational complexity nor806

on the battery lifespan. The two last impacts are of807

particular importance with both the advent of Edge808

Computing in the energy sector (Feng et al., 2021)809

and the growing awareness of the the difficulty to810

4Outline of the NWE’s Low Carbon Priority available at:
https://www.nweurope.eu/about-the-programme-2014-2020/the-themes/ ,
last access June 1st 2022
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manage and recycle renewable technologies such as811

batteries and PV modules (Nain and Kumar, 2022).812

To progress this state-of-affairs, an innovative CO2813

threshold-based strategy currently being developed814

as part of a European project named RED WoLF815

(Rethink Electricity Distribution Without Load Fol-816

lowing) has been proposed in our previous research817

work (Ortiz et al., 2021), which seeks to identify818

the best periods of the day to charge and discharge819

multiple types of storage units (incl., battery, stor-820

age heaters, water cylinder). In the present arti-821

cle, RED WoLF is evaluated and compared with a822

second strategy proposed by Olivieri and McConky823

(2020), which also aims at reducing GHGE but with824

a slightly different infrastructure (only considering a825

battery as flexible energy-storage) and algorithm de-826

signed based on Linear Programming (LP). The com-827

parison study brings evidence that the two strategies828

(RED WoLF and Olivieri) contribute to significantly829

reduce GHGE compared to a solution without any op-830

timization logic, although Olivieri has a slight advan-831

tage (11% of reduction with Olivieri against 8% with832

RED WoLF). However, as analyzed in this article, the833

behavior of the two algorithms is different in terms834

of charging/discharging periods, resulting in different835

pros and cons for the two strategies. Olivieri’s algo-836

rithm has a more dynamic management of the bat-837

teries with a multitude of charging/discharging cycles838

over the days, which has the advantage of maximiz-839

ing the consumption of local PV production, but, in840

comparison to RED WoLF, is less self-sufficient in the841

event of a power outage or of long periods of high842

grid carbon intensity. Such an aspect could eventually843

be of interest for distribution system operators dur-844

ing load shedding. RED WoLF also has the advan-845

tage of limiting the number of charging/discharging846

cycles compared with the Olivieri’s algorithm, which847

contributes in extending the battery’s lifespan (in av-848

erage, 109 months with RED WoLF against 38 with849

Olivieri’s model), which has a direct impact on the850

overall system cost and carbon footprint (i.e., reduc-851

ing maintenance costs, battery replacement, etc.). An-852

other pros of RED WoLF lies in the algorithmic com-853

plexity, which is very low compared to Olivieri (RED854

WoLF requiring less than a second to find an optimal855

solution, while Olivieri requires about 20 to 30min),856

and this conclusion would be the same with any other857

strategy using LP. This has a twofold consequence: (i)858

RED WoLF can be extended with additional objec-859

tives and constraints without causing extra computa-860

tional burden; (ii) RED WoLF is lighter, resulting in861

a lower GHGE and making it more suitable to be de-862

ployed on edge devices.863

Overall, our study does not allow to derive generic864

conclusions and findings, but still it brings interest-865

ing empirical evidence that two models designed on866

two distinct theories lead to very different behaviors867

and side effects (whether from a financial and battery868

lifespan perspective).869

5.3. Further considerations in future research870

It should be noted that both RED WoLF and871

Olivieri strategies imply the integration of PV arrays,872

battery and ICT technologies, which have a non neg-873

ligble environmental impact considering the whole874

lifecycle of such technologies. The recent article of875

Sebestyén (2021) provides an interesting analysis in876

this regard, showing that in the case of wind, hydro-877

, geothermal, solar and biomass power plants falling878

ice, changes in the flow regime of rivers, noise, ero-879

sion caused by panels and the scale of harvesting,880

respectively, are the most critical environmental im-881

pacts.882

From a research perspective, further studies and883

tools for Life Cycle Assessment (LCA) and Life884

Cycle Cost (LCC) should be developed to evaluate885

the overall sustainability of renewable energy sys-886

tems/architectures, i.e. not only considering the op-887

erational phase, but also on the design phase (e.g.,888

considering the quantity of available raw materials)889

and the recycling/disposal one. In this respect, fore-890

casts about dynamics of raw materials (e.g., raw mate-891

rial reserves) released by EIT RawMaterials-like ini-892

tiatives5 could be considered and integrated to such893

analyses.894
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