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Abstract: Geopolymer concrete offers a favourable alternative to conventional Portland concrete
due to its reduced embodied carbon dioxide (CO2) content. Engineering properties of geopolymer
concrete, such as compressive strength, are commonly characterised based on experimental practices
requiring large volumes of raw materials, time for sample preparation, and costly equipment. To
help address this inefficiency, this study proposes machine learning-assisted numerical methods
to predict compressive strength of fly ash-based geopolymer (FAGP) concrete. Methods assessed
included artificial neural network (ANN), deep neural network (DNN), and deep residual network
(ResNet), based on experimentally collected data. Performance of the proposed approaches were
evaluated using various statistical measures including R-squared (R2), root mean square error
(RMSE), and mean absolute percentage error (MAPE). Sensitivity analysis was carried out to identify
effects of the following six input variables on the compressive strength of FAGP concrete: sodium
hydroxide/sodium silicate ratio, fly ash/aggregate ratio, alkali activator/fly ash ratio, concentration of
sodium hydroxide, curing time, and temperature. Fly ash/aggregate ratio was found to significantly
affect compressive strength of FAGP concrete. Results obtained indicate that the proposed approaches
offer reliable methods for FAGP design and optimisation. Of note was ResNet, which demonstrated
the highest R2 and lowest RMSE and MAPE values.

Keywords: geopolymer concrete; artificial neural network; machine learning; deep neural network;
ResNet; compressive strength; fly ash

1. Introduction

Emission of carbon dioxide caused by various sectors, including construction, industrial processes,
transport, residential, and agriculture, has emerged as a severe problem that dramatically affects

Appl. Sci. 2020, 10, 7726; doi:10.3390/app10217726 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-0403-6903
https://orcid.org/0000-0002-3106-9110
http://dx.doi.org/10.3390/app10217726
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/21/7726?type=check_update&version=2


Appl. Sci. 2020, 10, 7726 2 of 16

global climate change. Calcining limestone in Portland cement production represents 8% of global
anthropogenic CO2 emission [1]. Global production of cement increased rapidly from 1.5 billion tonnes
in 1998 [2] to 4.1 billion tonnes in 2018 [3], which has significantly impacted emissions linked to the
construction sector. This justifies the need for more sustainable alternatives sourced from industrial
by-products/wastes with minimal embodied carbon, offering a balance of technical, environmental,
and economic benefits.

In this context, geopolymer concrete using industrial by-products (e.g., fly ash and
ground-granulated blast-furnace slag) has been reported to reduce up to 80% of CO2 emission
relative to conventional concrete [4]. Geopolymer products are synthesised through the reaction
of alkali liquid with silica and alumina contained in aluminosilicate precursors. Depending upon
local resources, solid aluminosilicate precursors can be sourced from industrial by-products such
as fly ash, metakaolin, red mud, and waste glass [5–8]. According to previous studies [9–13], fly
ash-based geopolymer (FAGP) concrete showed the ability to achieve high compressive strengths up
to 68 MPa. To assess the compressive strength of concrete, universal compression testing machines
are typically used to apply compression load on cylindrical or cube specimens at a prescribed rate
(e.g., 20–50 psi/s or 0.14–0.35 MPa/s based on American Society for Testing and Materials (ASTM)
C39/C39M-18 [14]). In addition to direct testing, non-destructive testing methods, such as ultrasonic
pulse velocity and rebound hammer, are also used to predict the compressive strength of concrete
products [15–17]. However, these experimental methods rely heavily on costly equipment and
time-consuming preparation of specimens.

As such, artificial intelligence approaches including artificial neural network, adaptive neuro
fuzzy inference, and deep learning have been employed to predict the mechanical properties of FAGP
concrete by several researchers [18–21]. Inspired by the biological neural system, the artificial neural
network (ANN) algorithm with three neuron layers has been widely applied in different research
fields such as civil engineering, biochemistry, pharmaceutics, and biology owing to its ability to learn
complex relationships among values in its training patterns. Dao et al. [19] investigated the compressive
strength of FAGP concrete consisting of steel slag aggregates using ANN and neuro fuzzy inference
approaches. Mean absolute error, R-squared, and root mean square error (RMSE) were employed
to evaluate the performance of the proposed approaches. Three input parameters including sodium
hydroxide (NaOH) concentration, alkali activator/fly ash ratio, and sodium hydroxide-to-sodium
silicate ratio were used to predict the compressive strength of FAGP concrete. Results obtained from the
ANN were in substantial agreement with experiment data. Sensitivity analysis for ANN and adaptive
neuro fuzzy inference were adopted in a study by the same authors [18] to evaluate the impact of
each input factor including the mass of fly ash, sodium silicate (Na2SiO3), NaOH, and water on the
accuracy of the proposed models. The two approaches effectively predicted the compressive strength
of the geopolymer concrete using only three input parameters in the mixture proportion. Curing
condition factors were neglected in these studies even though they undoubtedly play essential roles in
the compressive strength of geopolymer concrete [22–25]. In addition to mixture proportion factors,
curing time and temperature values were added in the training dataset for compressive strength
prediction of FAGP concrete using ANN in a study by Ling et al. [21]. Results from ANN modelling
methods showed good agreement with those obtained from experiments. The authors concluded
that compressive strength of geopolymer concrete was profoundly influenced by mixture proportion
and curing conditions. Performance of deep neural network (DNN) and deep residual network
(ResNet) approaches in predicting the compressive strength of FAGC was investigated in a study by
Nguyen et al. [20]. With high rate of recognition accuracy within a complex network, the ResNet
model showed better performance than the DNN models, with two main forward and backward
passes; therefore, it has been used in several advanced engineering problems [26,27]. ResNet and
DNN approaches were also employed to predict compressive strength of conventional and foamed
concrete in the studies by Jang et al. [28] and Nguyen et al. [29], respectively. Against this background,
current solutions to predict compressive strength of FAGP concrete have not been dealt with in
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depth within existing literature. Although various machine learning approaches including ANN and
DNN have been separately introduced in several studies [19,21] as numerical predictors for FAGP
strength, a thorough search of relevant published literature yielded a mere presence of the ResNet
approach in FAGP property prediction. The lack of studies on impacts of input parameters (e.g., mix
proportion ratios, NaOH concentration, and curing conditions) on geopolymer strength indicates
possible improvements for upcoming research. More comprehensive research needs to be carried
out to investigate the effectiveness of various machine learning methods in predicting compressive
strength of FAGP concrete, considering a wider variety of input parameters and sensitivity analysis.

As such, this study aims to offer advancements to the existing literature by employing ANN,
DNN, and ResNet approaches integrated with sensitivity analysis to predict the compressive strength
of FAGP concrete. These models were trained through 263 pairs of input/target values obtained
from experiments. Performance of FAGP strength prediction of the three proposed approaches was
investigated in two phases. In the first phase, the models were trained and validated using randomly
shuffled datasets. Additional training and assessment under K-fold cross validation schemes were
then carried out to confirm the results obtained from the first phase. Impacts of six input parameters
(including NaOH/Na2SiO3 ratio, fly ash/aggregate ratio, alkali liquid/fly ash ratio, NaOH concentration,
curing time, and temperature) on prediction models were investigated using sensitivity analysis.
Outcomes from sensitivity analysis are expected to identify the critical input parameters in FAGP
strength prediction and control them carefully during geopolymer production. Three measures
including R-squared (R2), root mean square error (RMSE), and mean absolute percentage error (MAPE)
were employed to evaluate the accuracy of the proposed machine learning techniques.

2. Machine Learning Approaches

2.1. Artificial Neural Network (ANN)

Inspired by the biological neuron system, ANN is based on a suite of mutually connected units,
known as perceptrons, which replicate the functions of neurons in the human brain. ANN is one of
the main models used in machine learning where its structure is formed by three layers of neurons
including input, hidden, and output layers. Independent variables enter the system through the input
layer and are processed in the hidden layer, while predicted values are generated in the output layer.
Figure 1 presents the basic concept of ANN.
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Figure 1. The construction of the artificial neural network (ANN) [20].

2.2. Deep Neural Network (DNN)

DNN consists of more layers and neurons than ANN, leading to its ability to learn functions with
a high degree of complexity. DNN possesses a powerful representational ability of input data and can
reduce over-fitting issues in regression performance [30]. With powerful representational ability, DNN
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is able to achieve high accuracy in various tasks [31]. A typical DNN network structure is presented in
Figure 2, including two main forward and backward phases.
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2.3. Deep Residual Network (ResNet)

ResNet was developed to overcome a limitation in training deep networks where training errors
can increase as the number of layers increases [20]. Owing to modified architectures, ResNet models
have been empirically confirmed to enhance learnability of neural networks with less error on defined
tasks using a limited number of layers [32]. ResNet consists of residual blocks with shortcut connections
as shown in Figure 3, where the formulation H(x) is the desired mapping output of a specific layer
and x is the input data. Given the presence of shortcut connections, gradient-based optimisation
algorithms work effectively under ResNet-based architectures and improve the learnability of weight
layers representing the function F(x) [33].
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3. Experimental Programme

3.1. Materials and Mixing Process

Constituent materials of the FAGP concretes considered were fly ash, coarse and fine aggregates,
alkali activator, and water. Low-calcium fly ash (class F) with a specific gravity of 2500 kg/m3 was
used as the main aluminosilicate precursor. The chemical composition of the fly ash used is presented
in Table 1, which conforms to requirements from ASTM 618 [ASTM]. The FAGP concrete mix designs
and mixing processes were based on a previous study by Nguyen et al. [20]. Geopolymer mix
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designs were formulated based on various binder and aggregate contents, concentration of sodium
hydroxide, and curing conditions. The ratio of fly ash mass to total aggregate mass (fly ash/aggregate)
varied from 0.13–0.37. Specific gravities of the coarse and fine aggregates were 2700 kg/m3 and
2650 kg/m3, respectively.

Table 1. Chemical compositions of fly ash class F.

Oxide SiO2 Al2O3 Fe2O3 CaO K2O & Na2O MgO SO3 LOI

(%) 51.7 31.9 3.48 1.21 1.02 0.81 0.25 9.63

Sodium silicate solution consisting of 36% Na2O and 38% SiO2 by mass was mixed with sodium
hydroxide with a wide range of concentrations including 4M, 8M, 11M, 12M, 15M, and 18M to
prepare alkali liquid (AL). The ratios of NaOH/Na2SiO3 and AL/fly ash ranged from 0.4–2.5 and
0.3–0.7, respectively.

Fly ash and aggregates were mixed together on a slow setting for about three minutes. Alkali
solution was then added and mixed for a further four minutes before casting. Fresh FAGP concrete
was cast in standard cylinder moulds (100 mm diameter, 200 mm high), de-moulded after 24 h, and
then cured in an oven at temperatures 40, 60, 80, 90, 100, and 120 ◦C for 2, 4, 6, 8, 10, and 12 h. The
processing and testing procedure is represented in Figure 4.
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3.2. Data Preparation for Machine Learning Approaches

According to previous studies [10,22,34], FAGP concrete properties depend on constituent material
proportioning, concentration of sodium hydroxide (CM), and curing conditions. In this study, a total
of 263 pairs of input/target values fabricated from different geopolymer mix proportions, NaOH
concentration, and curing conditions were designed to generate the data for running the machine
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learning-based models. Inside these models, the six input variables considered to estimate the
compressive strength of FAGP concrete were: NaOH/Na2SiO3, fly ash/aggregate and AL/fly ash, CM,
curing time, and curing temperature. For compressive strength measurement, FAGP concrete cylinders
were subjected to axial compression with a loading rate of up to 0.35 MPa/s according to ASTM C39/C
39M-18 [14] after seven days. At least three specimens were tested for each mix design of FAGP
concrete to obtain the mean value of the compressive strength. The test data from experimental works
are given in Table 2.

Table 2. Statistical parameters of fly ash-based geopolymer (FAGP) concrete used in the training dataset.

Parameter Unit Value Variable

NaOH/Na2SiO3 Min. 0.4–Max. 2.5

Input

Fly ash/Aggregate Min. 0.13–Max. 0.37
AL/Fly ash Min. 0.3–Max. 0.7

NaOH concentration M 4, 8, 11, 12, 15, 18
Curing time h 2, 4, 6, 8, 10

Curing temperature ◦C 40, 60, 80, 90, 100, 120
Compressive strength MPa 5.44–67.86 Output

Total number of datasets 263

4. Research Methodology

In this study, 263 datasets (each comprising six inputs and one output) were used to train and
validate ANN, DNN, and ResNet models. In terms of inputs, each dataset comprised a unique
combination of the six mix design values considered, as summarised in Table 2. The output for each
dataset was the corresponding average compressive 7-day strength result obtained from experimental
testing. The range of strength values recorded for the 263 combinations considered was 5.55–67.86 MPa.

A data division scheme was applied to reduce possibilities of error and improve the reliability
of predicted results. Random selection of about 90% of the values (235 datasets) in the training
dataset were chosen from the original data collection to train the network, while the remaining values
(28 datasets) remained untrained as a validation database to confirm the accuracy of the trained
network. The structures of three machine learning approaches including ANN, DNN, and ResNet are
presented in the schematic flowchart in Figure 5.

FAGP concrete compressive strength was predicted by employing ANN, DNN, and ResNet
architectures comprising weight, normalisation, and activation layers in regression tasks. For
comparative purposes, DNN and ResNet models consisted of the same number of nodes with
128 nodes in Weight Layer 1 and 256 nodes in Weight Layer 2. A layer with 256 nodes, known as Weight
Layer 3, was included to enable additional operation at the end of ResNet implementation. The ANN
model with one weight layer comprised 384 nodes. One of the stochastic gradient descent methods,
known as Adam [35], was used as the optimisation method to update neural networks coefficients
since it integrated advanced features from different optimisation algorithms, including AdaGrad and
RMSProp. The layer normalisation method introduced by Ba et al. [36] was employed to ensure
inputs to layers fell within specific ranges since it exhibited efficient training time in neural network
architecture compared to traditional batch normalisation. Training models without normalisation
were also carried out to validate the effectiveness of the model integrated with layer normalisation.
During the training process, dropping out units with keep probability of 0.2 in the architectures were
included in the final models to prevent overfitting problems. Table 3 presents details of the setting of
six architectures (known as architectures 1–6) implemented in this study.
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Table 3. Details of the setting of six investigated architectures from artificial neural network (ANN),
deep neural network (DNN) and deep residual network (ResNet).

Properties Architectures

1 2 3 4 5 6

Network ANN ANN DNN DNN ResNet ResNet

Layer Normalisation Yes No Yes No Yes No

Activation Function
Rectified linear unit (ReLU) ReLU ReLU ReLU ReLU ReLU ReLU

Drop-out Yes Yes Yes Yes Yes Yes

Three statistical measures including R2, RMSE, and MAPE were applied to evaluate the accuracy
of the proposed machine learning approaches under the K-fold cross validation scheme. These
parameters provide insights into differences between original and estimated values. Higher R2 value
and/or lower MAPE and RMSE values indicate better prediction performance of machine learning
approaches [19]. The three statistical measures were calculated using the following equations:
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∑
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∑
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∑
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∑
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∑
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, (1)

MAPE =
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∣∣∣∣∣∣∣× 100, (2)
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√√√
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2, (3)
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where y j and y′j are the compressive strength obtained from experiments and predictions respectively;
n is the number of datasets.

The K-fold cross validation method divides data into K equal folds and then does K independent
training iterations on the prediction model with (K − 1) folds while leaving the remaining fold for
validation purposes. In this experiment, the common value K = 10 was used. The performance of the
prediction model was judged by averaging the metric measurement (R2, MAPE, and RMSE) measured
in K training and evaluating the iterations as follows:

MK− f old =
1
K

K∑
k=1

mk, (4)

where MK-fold denotes a general metric measurement when K-fold cross validation is applied, and mk is
the metric measurement in the fold k of the procedure.

An important note is that the same training and validation sets in each fold were used to train
and validate each model. A hypothesis test (e.g., paired t-test) with a significance level α = 0.05 was
then applied to the accurate measurements of each model on validation sets in 10 divided folds to
confirm the statistical significance of the results. The null hypothesis was that these measurements are
all in the same population (or belong to the same model), suggesting there is no difference between the
performance of two evaluated models. From the t-test, a p-value less than the chosen significance level
(α = 0.05) can statistically confirm the advance of a prediction model over the others (rejecting the null
hypothesis), while the p-value greater than this significance level may suggest that the event, or the
numerical conclusion, happens by chance (not rejecting the null hypothesis).

5. Experimental Programme

5.1. Estimative Performance of ANN, DNN, and ResNet Approaches

In the first phase, six predictive models based on three proposed machine learning approaches
(ANN, DNN, and ResNet) were trained and validated using randomly shuffled datasets obtained
from experimental works. Input variables in the dataset consisted of six parameters including mixture
proportions (i.e., NaOH/Na2SiO3, fly ash/aggregate, AL/fly ash), NaOH concentration, and curing
conditions. Compressive strength of FAGP specimens was regarded as output variable. The results
from the first phase were aimed to provide a short list of models to further test with K-fold cross
validation and the t-test method as described in Section 4.

R2, RMSE, and MAPE values for the ANN (architecture 1 and 2), DNN (architecture 3 to
4), and ResNet (architecture 5 to 6) models are summarised in Table 4, with the bold numbers
representing the best predictive model of each approach. As shown, architectures 1, 3, and 6 were
found to be the best ANN, DNN, and ResNet models, respectively. From the six architectures
presented in Table 4, ResNet-based architecture 6 was the best model for determining FAGP concrete
compressive strength with the highest R2 of 0.937 and lowest RMSE and MAPE values (1.987 and 6.6,
respectively). Apart from the ResNet models, ANN-based architecture 1 (R2 = 0.889; RMSE = 4.711;
MAPE = 14.06) and DNN-based architecture 3 (R2 = 0.898; RMSE = 2.521; MAPE = 9.496) showed better
predictive performance than the other models (architecture 2, 4, and 5). Based on these observations,
ANN-based architecture 1, DNN-based architecture 3, and ResNet-based architecture 6 were selected
for further investigation.
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Table 4. Performance comparison of six architectures for FAGP compressive strength prediction in
terms of R-squared (R2), root mean square error (RMSE) and mean absolute percentage error (MAPE).

Models Metric
Training Validation

R2 RMSE MAPE R2 RMSE MAPE

ANN
Architecture 1 0.921 3.153 9.291 0.889 4.711 14.06
Architecture 2 0.827 4.802 12.712 0.798 5.059 11.818

DNN
Architecture 3 0.923 3.273 11.54 0.898 2.521 9.496
Architecture 4 0.821 5.004 14.03 0.84 3.161 13.486

ResNet
Architecture 5 0.921 3.244 9.105 0.915 3.288 8.581
Architecture 6 0.896 3.815 9.797 0.937 1.987 6.600

In the second phase, further investigation into performance of the proposed approaches was
carried out using additional training and assessment under a 10-fold scheme with three architectures:
1, 3, and 6. Results of various statistic measures (R2, MAPE, and RMSE) for each fold and the average
(Avg.) values with standard deviations are presented in Table 5. The same training and validation
sets of each fold were applied for the three models 1, 3, and 6. As shown in this table, ResNet-based
architecture 6 obtained the best strength prediction performance in terms of R2 (0.934 ± 0.021), RMSE
(2.750 ± 0.573), and MAPE (8.552 ± 1.333. Also, a further paired t-test with α = 0.05 was applied
to prove the statistical significance of this observation. As presented in Table 6, p-values from the
comparisons of ResNet model and ANN/DNN models were lower than the chosen significance level
(α = 0.05), providing statistical confirmation that the ResNet model out-performed the ANN/DNN
model in terms of FAGP strength prediction.

Relationships between the experimental and predicted strength values from architectures 1, 3,
and 6 are illustrated in Figure 6. As shown, compressive strength values predicted by all machine
learning models were close to the actual values obtained from compression experiments, indicating
that the proposed approaches were successfully trained to predict FAGP compressive strength. The
ResNet model outperformed the other models with the strongest relationship existing between actual
and predicted values. This observation was confirmed in Figure 7, which presents the correlation
coefficient (R) of the three approaches in terms of validation data. Minimal variation existed between
actual and predicted values existed for the ANN, DNN, and ResNet models, albeit with the highest
variance being associated with the former (architecture 1).

The relationship between iterations of the three best performed architectures (1, 3, and 6) and
validation RMSE is shown in Figure 8. The highest convergence speed was observed in ResNet-based
architecture 6 model, which required only 2000 iterations to reach a validation RMSE of 4.8 MPa. For
the same RMSE, higher iteration numbers of 6000 and 148,000 were required for DNN and ANN
models, respectively. After convergence, sufficiently low values of RMSE were observed in the ResNet
and DNN models, indicating better performances over the ANN model. For instance, at the same
iteration value of 152,000, the ANN model converged at an RMSE of 4.7 MPa while ResNet and DNN
models achieved lower values of RMSE (2.1 MPa and 2.7 MPa, respectively).
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Table 5. Accuracy measurements on validation sets for the proposed machine learning approaches
(architectures 1, 3, and 6) under K-fold cross validation scheme.

Fold R2 RMSE MAPE

ANN

1 0.830 4.650 15.807

2 0.894 3.447 9.696

3 0.899 3.954 10.676

4 0.888 3.498 10.354

5 0.937 2.805 7.440

6 0.914 4.174 8.366

7 0.873 4.080 9.658

8 0.927 2.367 7.728

9 0.943 2.615 7.189

10 0.832 4.409 13.452

Avg. 0.893 ± 0.038 3.600 ± 0.748 10.036 ± 2.621

DNN

1 0.908 3.218 9.398

2 0.915 3.074 10.047

3 0.907 3.812 11.298

4 0.910 3.134 8.830

5 0.937 2.803 9.663

6 0.879 4.947 9.030

7 0.910 3.436 8.948

8 0.937 2.988 7.876

9 0.946 2.542 6.515

10 0.866 3.951 13.264

Avg. 0.912 ± 0.023 3.391 ± 0.659 9.487 ± 1.740

ResNet

1 0.929 1.907 9.043

2 0.923 3.097 9.130

3 0.921 3.512 9.919

4 0.946 2.441 7.738

5 0.950 2.504 7.692

6 0.926 3.367 7.654

7 0.939 2.815 7.831

8 0.967 1.929 7.406

9 0.950 2.434 7.400

10 0.886 3.495 11.709

Avg. 0.934 ± 0.021 2.750 ± 0.573 8.552 ± 1.333

Table 6. Paired t-test for statistical significance between ResNet and ANN-based models (architecture 6
and 1) and between ResNet and DNN-based models (architecture 6 and architecture 3).

p-Value ResNet vs. ANN ResNet vs. DNN

R2 0.00193 0.00053

RMSE 0.00616 0.00395

MAPE 0.04952 0.00499
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Figure 9 presents the distribution of error rates at 5% increments for predicted results obtained
from architectures 1, 3, and 6. It is noted that the majority of datasets (61%) from the ResNet model
exhibited error levels less than 5%. Corresponding frequencies of errors less than 5% for the ANN and
DNN models were significantly lower (approximately 21 and 35%, respectively). In terms of errors less
than 20%, frequencies for the ANN, DNN, and ResNet models were 79, 89, and 89%, respectively. In
terms of ranking, therefore, the ResNet model provided the best estimative performance, followed by
the DNN and ANN models.
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5.2. Sensitivity Analysis

Sensitivity analysis is commonly used to evaluate how input parameters affect output variation
derived by machine learning models [37]. As the best performing model, ResNet-based architecture
6 was exclusively selected for this analysis, which involved calculating FAGP concrete compressive
strength by changing one input variable at a time while maintaining the other five as constants based
on their mean values. For example, to assess the importance of the NaOH/Na2SiO3 ratio, this value
was varied from 0.4–2.5, while fly ash/aggregate, AL/Fly ash, NaOH concentration, curing time, and
temperature values were kept constant at mean values of 0.23, 0.5, 14 (M), 8 h, and 85.6 ◦C, respectively.
Data derived from this sensitivity analysis were returned to the training process to estimate compressive
strength. For each parameter, a corresponding sensitivity analysis factor was given by the expression:

Ii = fmax(xi) − fmin(xi), (5)

SAi =
Ii∑
i

Ii
× 100, (6)

where fmax(xi) and fmin(xi) are the maximum and minimum estimated compressive strengths relating to
the input variable xi, with all other input parameters kept constant at their mean values.

Figure 10 shows the results of this sensitivity analysis, from which a pronounced influence (35.5%)
of fly ash/aggregate ratio on estimated compressive strength can be seen. A similar effect was observed
in the study by Joseph and Mathew [11], and can be explained by the fact that the internal void structure
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formed by fly ash and aggregates has direct effects on FAGP compressive strength. Additionally,
shown in this figure are high sensitivity scores of 16.22%, 16.18%, and 14.93% for curing time, NaOH
concentration, and curing temperature, respectively. This confirms the observations from previous
studies by [22,23] where curing conditions play significant roles in compressive strength of FAGP
concrete. As such, various factors such as mix proportions, sodium hydroxide concentration, and
curing regimes should be thoroughly considered in the prediction of FAGP mechanical properties
using machine learning approaches. In particular, based on these findings, it is recommended that the
fly ash/aggregate ratio is carefully determined and controlled in geopolymer manufacturing processes
owing to its pronounced effect on FAGP strength.
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6. Conclusions

This study employed three different machine learning approaches including ANN, DNN, and
ResNet to predict compressive strength of fly ash-based geopolymer concrete. Six parameters of mix
design and curing conditions (including NaOH/Na2SiO3, fly ash/aggregate, AL/Fly ash, concentration
of sodium hydroxide, curing time, and temperature) and corresponding 7-day compressive strength
results were used to generate 263 unique input/output pairs for model training purposes.

While the results indicated that all three machine learning approaches could predict FAGP concrete
compressive strength with some degree of accuracy, the ResNet model was the most promising method
with the highest R2 (0.937) and the lowest RMSE (1.987) and MAPE (6.6) values. This observation was
confirmed by additional training and assessment under the K-fold cross validation scheme and paired
t-test with α = 0.05, where the highest R2 (0.934 ± 0.021) and the lowest RMSE (2.750 ± 0.573) and
MAPE (8.552 ± 1.333) were observed in the ResNet-based model. Sensitivity analysis performed for
the ResNet model confirmed that the ratio of fly ash/aggregate was the most dominant factor when
predicting compressive strength, with a sensitivity analysis score of 35%. This was followed in order
of importance by curing temperature (16.22%), NaOH concentration (16.18%), curing time (14.93%),
NaOH/Na2SiO3 ratio (12.90%), and AL/fly ash ratio (4.22%). This analysis indicates the importance of
considering a wide range of input parameters in the prediction of FAGP concrete compressive strength
and controlling them carefully during the manufacturing process.

This study provides a detailed understanding of performance of different machine learning
approaches in strength prediction for FAGP concrete. The findings highlight potential uses of the
proposed machine learning approaches such as ResNet and DNN as effective tools to, not only precisely
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predict mechanical properties of FAGP, but also to develop mix designs for geopolymer concrete. In
the next phase of work, consideration will be given to how ResNet and DNN models can be applied in
FAGP manufacturing industries to predict optimised mix designs and curing regimes based on target
compressive strength. This predictive ability will also be linked to mix design evaluations in terms
of potential cost and environmental benefits prior to construction stages. In addition, the proposed
machine learning approaches adopted a general training scheme for neural networks with standard
input and output features, indicating promising potential to be applied to other regression problems in
upcoming research works.
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