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Abstract

Cancer cachexia is accompanied by muscle atrophy, sharing multiple common catabolic

pathways with sarcopenia, including mitochondrial dysfunction. This study investigated

gene expression from skeletal muscle tissues of older healthy adults, who are at risk of age-

related sarcopenia, to identify potential gene biomarkers whose dysregulated expression

and protein interference were involved in non-small cell lung cancer (NSCLC). Screening of

the literature resulted in 14 microarray datasets (GSE25941, GSE28392, GSE28422,

GSE47881, GSE47969, GSE59880 in musculoskeletal ageing; GSE118370, GSE33532,

GSE19804, GSE18842, GSE27262, GSE19188, GSE31210, GSE40791 in NSCLC). Dif-

ferentially expressed genes (DEGs) were used to construct protein-protein interaction net-

works and retrieve clustering gene modules. Overlapping module DEGs were ranked based

on 11 topological algorithms and were correlated with prognosis, tissue expression, and

tumour purity in NSCLC. The analysis revealed that the dysregulated expression of the

mammalian mitochondrial ribosomal proteins, Mitochondrial Ribosomal Protein S26

(MRPS26), Mitochondrial Ribosomal Protein S17 (MRPS17), Mitochondrial Ribosomal Pro-

tein L18 (MRPL18) and Mitochondrial Ribosomal Protein L51 (MRPL51) were linked to

reduced survival and tumour purity in NSCLC while tissue expression of the same genes fol-

lowed an opposite direction in healthy older adults. These results support a potential link

between the mitochondrial ribosomal microenvironment in ageing muscle and NSCLC. Fur-

ther studies comparing changes in sarcopenia and NSCLC associated cachexia are

warranted.
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Introduction

Sarcopenia is a muscle wasting disorder characterised by a decline in skeletal muscle mass,

strength, and physical function [1]. Rates of sarcopenia are exacerbated with ageing [2] and are

prevalent in both healthy community dwelling older adults as well as those in long-term care.

The estimated prevalence of sarcopenia varies significantly but can be as high as ~40% in

healthy older adults [3, 4] and up to ~75% in older patients [5–7] depending on the diagnostic

criteria used. Although the development of sarcopenia is a common phenomenon in ageing,

the catabolic responses underpinning skeletal muscle dysfunction have been associated with

multiple malignant co-morbidities, including cancer [8].

Similarly to sarcopenia, cancer cachexia is characterised by muscle loss, which can occur

with or without the presence of fat loss and is typically associated with symptoms of cachexia,

anorexia, fatigue, and early satiety [9]. Common mechanisms shared by both sarcopenia and

cancer cachexia, include systemic low-grade inflammation, mitochondrial dysfunction, dysre-

gulated autophagy, cellular senescence, impaired muscle cell regeneration, and higher protein

turnover leading to anabolic resistance [10]. In older cancer populations, similar rates of can-

cer cachexia (~65%) and sarcopenia (as high as ~60%) have been reported [11]. These physio-

logical perturbations may lead to muscle atrophy, compromised innate immunity, increasing

physical malfunction, and reducing quality of life [9, 12].

Worldwide, lung cancer is the most prevalent cancer and the leading cause of cancer-

related deaths [13]. The pooled prevalence of sarcopenia in non-small cell lung cancer

(NSCLC) patients is 52% and ranks first among all cancers and is linked to poor clinical out-

comes and survival rates [14]. Interestingly, muscle mass constitutes a prognostic factor during

palliative chemotherapy treatment in patients with advanced NSCLC [15]. At present, exercise

and nutrition interventions have been widely used for the treatment of NSCLC-related sarco-

penia with the aim of improving outcomes [16]. The synergistic effects of exercise and optimi-

sation of protein and energy intake is reported as being paramount, but not exclusive, for the

successful management of sarcopenia [17]. With regards to cachexia, adequate nutritional sup-

port appears to be the main means of treatment [9]. Exercise [18] and nutrition (i.e., essential

amino acids) [19] interventions can be effective complementary non-pharmacological thera-

pies in cancer by preventing and better managing mitochondrial dysfunction [20], an impor-

tant contributing factor to sarcopenia [21]. However, evidence is limited, and further research

is needed to identify successful interventional treatments and markers of sarcopenia progres-

sion in association with ageing and NSCLC. The development of targeted interventions

requires a greater understanding of the relationship between the pathophysiological mecha-

nisms driving ageing associated sarcopenia and NSCLC cachexia. One important avenue is to

identify genetic markers that act as mediators in both conditions [22].

NSCLC cachexia is characterized by gene regulatory alterations underlying muscle wasting

[23, 24]. To date, there is a scarcity of published research comparing gene expression in skeletal

muscle from healthy older adults vs younger adults, and in NSCLC lung tissue vs age-matched

controls, which could shed light on potential molecular mechanisms driving cachexia and

musculoskeletal ageing. Mitochondrial bioenergetic dysfunction is a strong molecular signa-

ture of sarcopenia [21], and animal studies, have demonstrated a link between ageing and an

increase in the expression of genes involved in inflammation, a key characteristic of both sar-

copenia and cancer cachexia [25]. Equally, mitochondrial oxidative phosphorylation

(OXPHOS) capacity is reduced in cancer cells and reliance on glycolysis is further increased

[26]. Furthermore, studies have revealed localized polymorphisms at nucleotides of mitochon-

drial tRNA genes [27] and mitochondrial DNA mutations in lung cancer [28, 29] which may

be implicated with metastasis-specific lethality [30, 31]. These findings, highlight the
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importance of identifying how ageing influences gene expression, in older adults, without or

with diseases such as cancer, where sarcopenia/cachexia rates [11] are highly prevalent and

inflammation is a critical component of tumour progression [32]. Our study focused on exam-

ining gene expression from lung tissues of patients with NSCLC and skeletal muscle tissues of

older healthy adults. The aim of this study was to identify potential gene markers whose dysre-

gulated expression and protein interaction interference were involved in NSCLC cachexia and

musculoskeletal ageing.

Methods

A methodological stepwise approach was employed to address the objective of our study (Fig 1).

Collection of microarray datasets

Screening of the literature was ensued from inception until November 2021, by searching the

National Center for Biotechnology Information Gene Expression Omnibus using the search

terms: ageing OR aging OR old� OR sarcopenia AND skeletal muscle OR musculoskeletal

AND non-small cell lung cancer OR NSCLC OR lung adenocarcinoma OR LUAD OR lung

squamous cell carcinoma OR LUSC. An additional search was conducted using the National

Fig 1. Methodological summary of the stepwise workflow employed in our study. The literature was initially screened through the Gene Expression

Omnibus database for publicly available microarray datasets containing skeletal muscle samples from older and lung samples from patients with non-small cell

lung cancer (NSCLC) (1). Eligible gene expression profiles were thereafter integrated and meta-analysed using the random effect model (2). Thenceforth

differentially expressed genes (DEGs) with the strongest average effect across all included datasets were derived (3). Highly clustered (C) proteins of significant

and overlapping DEGs between the two conditions were identified using the Molecular Complex Detection and mapped using The Search Tool for the

Retrieval of Interacting Genes (4). The interactome interference of the shared sub-networks was evaluated using the intersection of 11 local and global-based

topological algorithms from CytoHubba and central hub objects as potential markers of musculoskeletal ageing and NSCLC disease progression were derived

(5). C: Cluster; H: Hub.

https://doi.org/10.1371/journal.pone.0273766.g001
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Library of Medicine PubMed via the following extra terms: differentially expressed genes OR

DEGs.

Datasets were restricted based on organism type (Homo sapiens), expression profiling

(microarray), sample type (skeletal muscle or lung tissue) and condition (ageing and NSCLC).

No restrictions in terms of language and geographic region were applied and datasets without

expression data for controls were excluded. No further exclusion criteria pertained to the base-

line characteristics of participants from which tissue sections were retrieved, were used.

Identification of differentially expressed genes

Skeletal muscle samples from older adults (aged� 60 years) were compared to healthy young

subjects (aged� 30 years), while lung samples from patients with NSCLC were compared to

those from healthy controls who were either age-matched or matched adjacent/distant normal

lung tissue from the same patient. No age restrictions were applied to the NSCLC cohort. Dif-

ferentially expressed genes (DEGs) were retrieved using ImaGEO and the random effect

model was employed in the integration of differential gene expression [33]. Genes with the

strongest average effect among all included datasets were identified. DEGs following P<0.05

corrected by the Benjamini-Hochberg False Discovery Rate were retrieved as significant and

those with Z score>1.96 were classified as upregulated, while those with Z score<-1.96 as

downregulated (both corresponding to a 5% significance level).

Construction of protein-protein interaction networks

DEGs from musculoskeletal ageing and NSCLC were used to create two distinct networks of

encoded proteins using The Search Tool for the Retrieval of Interacting Genes (STRING) [34].

The protein-protein interactions (PPI) in the networks were predicted using a medium proba-

bilistic confidence score of>0.4 and constructed with Cytoscape [35]. Applying a reasonably

moderate cut-off threshold was employed to enhance the coverage of all potential protein

interactions but without overestimating their precision. Proteins lacking interactions were

excluded from the networks.

Identification of clustering modules and hub genes

Highly clustered genes or modules in the PPI networks were retrieved using the Molecular

Complex Detection (MCODE) [36]. Application of cut-off was ensued after manual inspection

of clusters and a score yielding distinct separation of clusters into groups, was regarded. Clus-

ters with MCODE score>15 were considered as significant modules.

The interactome of module DEGs in the PPI networks was evaluated using CytoHubba

based on the intersection of 11 local and global-based topological algorithms as established by

Chin et al. [37], namely: Degree, Closeness, Betweenness, Radiality, Stress, EcCentricity, Bot-

tleNeck, Edge Percolated Component, Maximum Neighborhood Component, Density of

Maximum Neighborhood Component and Maximal Clique Centrality. The five highest-

ranked module DEGs that overlapped in the musculoskeletal ageing and NSCLC networks,

were regarded as hub genes.

Analysis of prognosis, expression level and tumour purity of

musculoskeletal ageing hub genes in NSCLC

The prognostic significance of hub genes common to musculoskeletal ageing and NSCLC, in

terms of expression and interactions, were examined in publicly available NSCLC transcrip-

tome data from GEO (GSE14814, GSE19188, GSE29013, GSE30219, GSE31210, GSE3141,
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GSE31908, GSE37745, GSE43580, GSE4573, GSE50081, GSE8894), TCGA and caArray data-

bases using the Kaplan-Meier-plotter [38]. Patients with NSCLC (n = 1927) were divided into

high and low expression groups and correlation with overall survival (OS) was retrieved using

a log-rank P<0.05. Their differential expression in NSCLC was determined using TCGA data

via the Gene Expression Profiling Interactive Analysis 2 [39] and the Tumour Immune Esti-

mation Resource 2 [40] algorithms. Overall expression, across different stages and in terms of

tumour microenvironment purity in NSCLC tissues was determined based on analysis of vari-

ance, a Wilcoxon test P<0.05 and the partial Spearman’s correlation (partial rho). Hub genes

with significantly reduced OS and altered (but opposite to musculoskeletal ageing) expression

in NSCLC, were considered significant and presented as potential gene markers of NSCLC

progression in musculoskeletal ageing.

Results

Overview of microarray datasets

Our literature search of the GEO and PubMed databases resulted in 14 microarray datasets

[GSE25941 [41], GSE28392 [41], GSE28422 [41], GSE47881 [41, 42], GSE47969 [42, 43],

GSE59880 [43–45] in musculoskeletal ageing; GSE118370 [46], GSE33532 [47], GSE19804 [48,

49], GSE18842 [50], GSE27262 [51, 52], GSE19188 [53], GSE31210 [54, 55], GSE40791 [56] in

NSCLC] (S1 Table). The former datasets included skeletal (vastus lateralis) muscle tissue biop-

sies from healthy young subjects (n = 96) and older adults (n = 110). The latter datasets

included lung tissue [majorly lung adenocarcinoma (LUAD) and lung squamous cell carci-

noma (LUSC)] biopsies from healthy controls (n = 341) and patients with NSCLC (n = 628).

Differentially expressed genes in musculoskeletal ageing and NSCLC

A total of 1960 DEGs were identified in older individuals when compared to younger counter-

parts (S2 Table). Of these, 1262 DEGs were upregulated, and 698 were downregulated. In con-

trast, a total of 4387 DEGs were retrieved in patients with NSCLC when compared to healthy

controls, of which 2654 were upregulated and 1733 were downregulated (S3 Table). Compara-

tive analysis between these expression profiles, revealed 540 (9.3%) overlapping DEGs, 1420

(24.5%) unique to musculoskeletal ageing samples and 3847 (66.2%) to NSCLC ones

(S4 Table).

Protein-protein interaction networks and modules in musculoskeletal

ageing and NSCLC

Two PPI networks of DEGs from musculoskeletal ageing and NSCLC datasets were created

and consisted of a total of 1763 and 4192 DEGs along 13436 and 66041 interactions, respec-

tively. Two highly clustered gene modules were identified in the musculoskeletal ageing net-

work and four in the NSCLC one (Table 1). The five highest-ranked hub module genes present

across both networks, were retrieved: Mitochondrial Ribosomal Protein S26 (MRPS26), Mito-

chondrial Ribosomal Protein S17 (MRPS17), Mitochondrial Ribosomal Protein L18

(MRPL18), Mitochondrial Ribosomal Protein L51 (MRPL51) and Coiled-Coil-Helix-Coiled-

Coil-Helix Domain Containing 1 (CHCHD1) (Tables 2 and 3, Fig 2).

Prognosis, expression level and tumour purity of musculoskeletal ageing

hub genes in NSCLC

Survival analysis of the GEO, TCGA and caArray revealed that high (but opposite to musculo-

skeletal ageing) expression of MRPS26, MRPS17, MRPL18 and MRPL51 correlated with
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Table 1. Gene composition of the highest-ranked clustering modules in the protein-protein interaction network of differentially expressed genes of musculoskeletal

ageing and non-small cell lung cancer.

Cluster MCODE

score

Gene

density

Gene

edges

Genes

Musculoskeletal ageing
1 32.542 60 960 ATP5F1D, ATP5MC3, ATP5PF, AURKAIP1, CHCHD1, COA6, COX4I1, COX6B1, COX6C, COX7B, COX7C, CYC1,

MRPL11, MRPL12, MRPL15, MRPL18, MRPL19, MRPL21, MRPL3, MRPL33, MRPL34, MRPL35, MRPL36, MRPL39,

MRPL4, MRPL41, MRPL46, MRPL48, MRPL51, MRPS12, MRPS16, MRPS17, MRPS22, MRPS24, MRPS26, MRPS33,

MRPS9, NDUFA12, NDUFA3, NDUFA6, NDUFA9, NDUFAB1, NDUFB10, NDUFB11, NDUFB5, NDUFB6, NDUFB9,

NDUFC1, NDUFS3, NDUFS4, NDUFS6, NDUFV2, PTCD3, SDHC, UQCR10, UQCR11, UQCRC1, UQCRFS1,

UQCRH, UQCRQ

2 17.000 19 153 C18orf32, EEF1G, EIF1AX, EPRS1, MTRF1, NHP2, RPL17, RPL23A, RPL26L1, RPL30, RPL36A, RPL3L, RPLP0, RPS10,

RPS18, RPS3, RPSA, RSL24D1, UBXN7

Non-small cell lung cancer
1 96.523 112 5357 ANLN, ASF1B, ASPM, ATAD2, BIRC5, BUB1, CCN1, CCNB1, CCNB2, CCNE2, CDC20, CDC25C, CDC45, CDC6,

CDCA2, CDCA3, CDCA5, CDCA7, CDCA8, CDK1, CDKN3, CENPA, CENPE, CENPF, CENPK, CENPM, CENPU,

CEP55, CHEK1, CKAP2L, CKS1B, DEPDC1, DEPDC1B, DLGAP5, DTL, E2F7, ERCC6L, ESPL1, EXO1, EZH2,

FAM83D, FANCI, FBXO5, FEN1, FOXM1, GINS1, GINS2, GMNN, GTSE1, HJURP, HMMR, KIF11, KIF14, KIF15,

KIF18A, KIF18B, KIF20A, KIF23, KIF2C, KIF4A, KNL1, KNTC1, MCM10, MCM2, MCM6, MELK, MKI67, MND1,

MYBL2, NCAPD2, NCAPG, NCAPG2, NCAPH, NDC80, NEIL3, NEK2, NUF2, OIP5, ORC1, PARPBP, PBK, PCLAF,

PCNA, PIMREG, PLK1, POLE2, PRC1, PRIM1, PTTG1, RACGAP1, RAD51, RAD51AP1, RAD54L, RFC4, RRM1,

RRM2, SHCBP1, SKA3, SMC2, SPC25, STIL, TACC3, TK1, TOP2A, TPX2, TRIP13, TROAP, TTK, UBE2C, UBE2T,

WDHD1, ZWINT

2 31.380 72 1114 AATF, ABT1, BMS1, BOP1, CTPS1, DCAF13, DDX51, DDX54, DDX56, DHFR, DHX32, DKC1, DTYMK, EARS2,

EBNA1BP2, EIF5A, EIF6, FANCA, FTSJ1, FTSJ3, GNL1, GNL2, GNL3, GNL3L, HEATR1, HUS1, LSG1, MDC1, MTIF2,

NOB1, NOC4L, NOL6, NOP14, NVL, ORC5, OXA1L, POLD2, RAD51C, RECQL4, RIOK2, RPA3, RPF2, RPL10A,

RPL12, RPL13, RPL15, RPL19, RPL22L1, RPL26L1, RPL30, RPL31, RPL39L, RPL6, RPL7, RPL8, RPP38, RPS18, RPS19,

RPS24, RRP1, RRS1, SIL1, TOPBP1, TRMT1L, TRMT2B, TUFM, URB1, UTP25, UTP4, WDR12, WDR3, WDR74

3 30.400 36 532 ATR, BARD1, CHCHD1, MRPL13, MRPL15, MRPL16, MRPL17, MRPL18, MRPL22, MRPL24, MRPL3, MRPL30,

MRPL32, MRPL36, MRPL40, MRPL45, MRPL47, MRPL49, MRPL51, MRPL55, MRPL57, MRPL58, MRPS10, MRPS16,

MRPS17, MRPS18A, MRPS18B, MRPS2, MRPS26, MRPS33, MRPS34, MRPS35, MRPS6, MRPS7, PTCD3, RAD54B

4 17.195 88 748 ACE, AOC3, CASP1, CAV1, CCL19, CCL22, CCL4, CCR1, CCRL2, CD19, CD27, CD274, CD276, CD69, CDH1, CDH5,

CDKN1A, CENPL, CENPQ, CENPX, CSF3, CTPS2, CX3CL1, CXCL1, CXCL13, CXCL16, CXCL3, CXCL6, CXCL9,

CXCR2, ELP3, FANCG, FANCL, FAS, FCGR2A, FCGR3B, GUF1, H2AC6, H2AC7, H2AJ, H2BC12, H2BC5, H2BC9,

HAVCR2, HGH1, HMGB1, HMOX1, IL1A, IL2RA, IL33, IL7R, IPO4, ITGAE, ITGAX, JUN, KLRC4-KLRK1, METTL1,

MIS18A, MMP13, MMP7, MRM2, NFKBIA, PALB2, PARP1, PF4, PKM, PLAU, POLR2C, PRF1, PUS7, RAD1, RBBP7,

RBBP8, RMI1, SELE, SELP, SOCS3, STN1, TBX21, TEK, TFB1M, TFDP1, THBS1, TIMP1, TLR4, TRUB2, TTC4,

VCAM1

MCODE: Molecular Complex Detection.

https://doi.org/10.1371/journal.pone.0273766.t001

Table 2. The top five ranked and overlapping hub genes according to 11 topological algorithms in the protein-

protein interaction networks of musculoskeletal ageing and non-small cell lung cancer differentially expressed

genes.

Gene ID Musculoskeletal

ageing

Non-small cell

lung cancer

Gene name

P-value Z-score P-value Z-score

MRPS26 1.05E-02 -3.46 4.79E-02 2.45 Mitochondrial Ribosomal Protein S26

MRPS17 4.09E-02 -2.92 2.73E-02 2.78 Mitochondrial Ribosomal Protein S17

MRPL18 2.78E-05 -5.18 2.15E-02 2.92 Mitochondrial Ribosomal Protein L18

MRPL51 9.26E-03 -3.51 4.95E-02 2.43 Mitochondrial Ribosomal Protein L51

CHCHD1 4.88E-02 -2.84 4.47E-02 2.49 Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing 1

CHCHD1: Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing 1; MRPL18: Mitochondrial Ribosomal Protein

L18; MRPL51: Mitochondrial Ribosomal Protein L51; MRPS17: Mitochondrial Ribosomal Protein S17; MRPS26:

Mitochondrial Ribosomal Protein S26.

https://doi.org/10.1371/journal.pone.0273766.t002
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significantly reduced OS (MRPS26: log-rank P = 2.7E-05, HR = 1.43; MRPL18: log-rank

P = 5.3E-05, HR = 1.3; MRPS17: log-rank P = 4.7E-15, HR = 1.66; MRPL51: log-rank P<1E-

16, HR = 2.11) in patients with NSCLC (Fig 3). Overall expression of these genes was signifi-

cantly upregulated in NSCLC tissues when compared to control, but with MRPL18 having also

altered expression between earlier and advanced disease states. The expression levels of these

genes (apart from MRPS17, MRPL18 MRPL51 in LUAD) were correlated with tumour purity

in NSCLC (LUAD: MRPS26: P = 8.25E-08, partial rho = 0.238; LUSC: MRPS26: P = 6.99E-20,

partial rho = 0.401; MRPS17: P = 4.89E-06, partial rho = 0.207; MRPL18: P = 5.9E-03, partial

rho = 0.126; MRPL51: P = 3.16E-05, partial rho = 0.189) (Fig 4).

Discussion

This study aimed to identify gene markers whose dysregulated expression and protein interac-

tion interference may potentially be involved in both musculoskeletal ageing and NSCLC

cachexia. Analysis of differentially expressed genes of musculoskeletal samples from healthy

older adults and lung tissues from patients with NSCLC, identified two gene modules in the

musculoskeletal ageing network and four in the NSCLC one. Multi-algorithmic topological

analysis revealed four overlapping mammalian MRP hub genes, MRPS26, MRPS17, MRPL18,

Table 3. Five highest-ranked hub genes according to 11 topological algorithms ranked in the protein-protein interaction network of differentially expressed genes

between musculoskeletal ageing and non-small lung cancer. Numbers represent score.

Topological Score MRPS26 MRPS17 MRPL18 MRPL51 CHCHD1

Musculoskeletal ageing
MCC 9.22E+13 9.22E+13 9.22E+13 9.22E+13 9.22E+13

DMNC 1.16 1.11 1.09 1.02 1.09

MNC 37.00 39.00 40.00 43.00 39.00

Degree 37.00 41.00 42.00 45.00 43.00

EPC 158.89 180.97 173.98 166.69 161.45

BottleNeck 1.00 1.00 1.00 1.00 2.00

EcCentricity 0.20 0.20 0.20 0.20 0.20

Closeness 1408.72 1444.37 1435.73 1463.67 1413.98

Radiality 5.88 5.95 5.93 5.99 5.88

Betweenness 723.45 2364.60 2161.21 3977.35 3270.41

Stress 21072.00 51878.00 47274.00 88412.00 64944.00

Non-small cell lung cancer
MCC 9.22E+13 9.22E+13 9.22E+13 9.22E+13 9.22E+13

DMNC 1.02 1.06 1.13 1.17 1.00

MNC 33.00 32.00 31.00 32.00 33.00

Degree 33.00 32.00 32.00 35.00 35.00

EPC 40.53 40.14 40.30 39.91 37.89

BottleNeck 1.00 1.00 2.00 1.00 2.00

EcCentricity 0.17 0.17 0.17 0.17 0.17

Closeness 588.33 574.20 575.63 600.20 577.40

Radiality 7.76 7.67 7.68 7.80 7.68

Betweenness 1224.50 340.27 676.94 1904.13 769.72

Stress 23148.00 7994.00 12340.00 31242.00 16996.00

CHCHD1: Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing 1; DMNC: Density of Maximum Neighborhood Component; EPC: Percolated Component; MCC:

Maximal Clique Centrality; MNC: Maximum Neighborhood Component; MRPL18: Mitochondrial Ribosomal Protein L18; MRPL51: Mitochondrial Ribosomal Protein

L51; MRPS17: Mitochondrial Ribosomal Protein S17; MRPS26: Mitochondrial Ribosomal Protein S26.

https://doi.org/10.1371/journal.pone.0273766.t003
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Fig 2. Hub genes of clustering modules in the protein-protein interaction network of differentially expressed genes from (A) musculoskeletal ageing and (B)

non-small cell lung cancer (NSCLC) patients, that were linked with reduced overall survival, opposing tissue expression to musculoskeletal ageing and tumour

purity in patients with NSCLC from public transcriptome data. Yellow nodes constitute hub genes. MRPL18: Mitochondrial Ribosomal Protein L18; MRPL51:

Mitochondrial Ribosomal Protein L51; MRPS17: Mitochondrial Ribosomal Protein S17; MRPS26: Mitochondrial Ribosomal Protein S26.

https://doi.org/10.1371/journal.pone.0273766.g002

Fig 3. Association of Mitochondrial Ribosomal Protein S26 (MRPS26), Mitochondrial Ribosomal Protein S17 (MRPS17), Mitochondrial Ribosomal

Protein L18 (MRPL18) and Mitochondrial Ribosomal Protein L51 (MRPL51) expression with overall survival in non-small cell lung cancer patients.

Significance was determined using a log-rank P<0.05 and the corresponding beeswarm graphs of probe distribution were displayed. HR: Hazard ratio.

https://doi.org/10.1371/journal.pone.0273766.g003
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and MRPL51, with opposing tissue expression between musculoskeletal ageing and NSCLC

when tissues from both groups were compared to their corresponding control states [i.e., a)

older healthy vs younger healthy and b) NSCLC vs age-matched healthy]. The dysregulated

expression of these genes was specifically linked with reduced OS and tumour purity in

patients with NSCLC. Our findings highlight the potential significant role of mitochondrial

ribosomal genes as potential markers of musculoskeletal ageing and NSCLC disease progres-

sion (Fig 5).

NSCLC is associated with abnormal expression of multiple MRP genes, and the downregu-

lation of key transcriptional factors involved in mitochondrial biogenesis have been described

during muscle atrophy [57, 58]. Furthermore, mitochondrial dysfunction has been suggested

to play a key role for the onset and progression of sarcopenia [18], while mitochondrial dys-

function either due to impaired mitochondrial protein synthesis or mitoribosome misassem-

bly can initiate mitochondrial ribosomal stress and be a contributing factor to diseases such as

lung cancer [59]. For instance, MRPS26 has been linked with intrinsic apoptotic pathway sig-

nalling and DNA damage response as a result of perturbations in p53 [60]. Indeed, the involve-

ment of MRPS26 has been observed in mitochondrial activity of muscle stem cells [61],

hinting that its expression could be central in mitochondrial degeneration during muscle atro-

phy-induced cancer cachexia [58].

Fig 4. Overall expression, across different stages and in terms of tumour purity of Mitochondrial Ribosomal Protein S26 (MRPS26), Mitochondrial

Ribosomal Protein S17 (MRPS17), Mitochondrial Ribosomal Protein L18 (MRPL18) and Mitochondrial Ribosomal Protein L51 (MRPL51) in non-small

cell lung cancer tissues from public transcriptome data. Significance was determined using analysis of variance, a Wilcoxon test P<0.05 and the partial

Spearman’s correlation (rho).��� P<0.001. LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell carcinoma; TPM: Transcripts per million.

https://doi.org/10.1371/journal.pone.0273766.g004
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MRPS17 is another gene that is consistently expressed in multiple cancers, including

NSCLC [62, 63]. The upregulation of MRPS17 has been linked with resistance to chemother-

apy treatment as described in trials with anti-cancer agents, temozolomide and nitrosoureas

[64]. Furthermore, a more recent human study has revealed that MRPS17 promotes gastric

cancer metastasis through abnormal signaling of phosphatidylinositol-3 kinase/Akt (PI3K/

Akt) [64], a pathway commonly dysregulated in NSCLC [65]. In muscle bioenergetics, PI3K/

Akt dysregulation may induce muscle atrophy by enhancing myostatin, and suppress muscle

hypertrophy via inhibiting the phosphorylation of mammalian target of rapamycin complex 1

signaling [66]. Future research is warranted to confirm the role of musculoskeletal MRPS17 in

PI3K/Akt metabolism and its contribution in ageing humans with NSCLC.

Dysregulated expression of MRPL18 has been correlated with tumour progression [67],

and its co-occurrence with NSCLC via Heat-Shock Factor 1 activation [68] has been previously

described. Prominently, perturbations in MRPL18 have been linked with cytosolic stress

response in insulin resistant microenvironments [69]. Additionally, abnormal MRPL18

responses have been involved with peroxisome proliferator-activated receptor γ coactivator-1β
deficient mice in which dissociation between mitochondrial dysfunction and insulin resistance

has been revealed [70]. Thus, musculoskeletal MRPL18 may be central in facilitating muscle

oxidation, [70] hinting a possible association between impaired muscle oxidative capacity,

physical performance, and insulin resistance in ageing and cachexia-related NSCLC [71].

Dysfunctional mitochondrial translation has also been linked with MRPL51 dysregulation

[72, 73]. Although human evidence in the setting of tumour progression remains unexplored,

there are emerging findings of its upregulation in NSCLC cell models, whereby Maiuthed et al.
[74] demonstrated >5-fold increase in MRPL51 in a lung cancer cell model. Attributed to its

elemental role in mitochondrial bioenergetics, the ramification of MRPL51 with myofibre

growth [75], muscle disuse atrophy [76], myostatin regulation [77], and dysregulated oxidative

phosphorylation [78] has been described. Therefore, it may be speculated that mitochondrial

alterations in adenosine triphosphate (ATP) synthesis and mitochondrial uncoupling in skele-

tal muscle may be associated muscle wasting in ageing, that could possibly instigate cancer-

related cachexia.

Taken all of the above into consideration, mitochondrial dysfunction via the dysregulated

expression of mammalian MRPs, possibly leads to insufficient ATP production during muscle

regeneration and may underline a link between muscle wasting during ageing and cachexia-

related cancer [79]. However, the interplay between mitochondrial dysfunction in skeletal

Fig 5. Dysregulated expression of mitochondrial ribosomal protein genes, Mitochondrial Ribosomal Protein S26

(MRPS26), Mitochondrial Ribosomal Protein S17 (MRPS17), Mitochondrial Ribosomal Protein L18 (MRPL18)

and Mitochondrial Ribosomal Protein L51 (MRPL51), as marker of musculoskeletal ageing and non-small cell

lung cancer disease progression.

https://doi.org/10.1371/journal.pone.0273766.g005
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muscle among older adults may be also mediated by the accumulation of visceral fat and insu-

lin resistance [80]. Glucose metabolism is largely dependent on mitochondrial activity for cel-

lular energy production, thereby fat accumulation in skeletal muscle may reduce

mitochondrial oxidative and phosphorylation capacity [81]. Specifically, the accretion of reac-

tive oxygen species by an overwhelming inflation of nicotinamide adenine dinucleotide phos-

phate oxidases via adipocytes and/or macrophages, may contribute to inflammation in the

adipose tissue [82]. Elevated levels of low-grade inflammation are accompanied by a concomi-

tant decrease of myoglobin and increased atrogenes (i.e., MuRF1, Atrogin-1) in lung cancer

models, that are involved in skeletal muscle degradation [83]. In this context, research in late-

onset obesity rats has reported truncation of mitochondrial assembly factors being associated

with increased adiposity and dysregulated insulin signaling [84]. Nevertheless, experimental

human studies investigating the relationship of MRPs and their expression in musculoskeletal

ageing and NSCLC are required to explore the underlying genetic links between sarcopenia

and cachexia-related cancer. Importantly, the role of skeletal muscle satellite cells as regulators

of hypertrophic [85–88] and non-hypertrophic [89, 90] tissue remodeling should not be dis-

missed since satellite cells in older sarcopenic adults influences the ability of skeletal muscle to

regenerate, repair, and remodel [91], while a decline in the overall number of satellite cells may

be more prevalent in aged muscle [92, 93]. Reduced satellite cell content has been particularly

observed in type II muscle fibres of older adults [94–98]. Considering that in cancer, glycolysis

becomes more important for energy provision due to a reduced mitochondrial OXPHOS

capacity [26], future studies should also further explore the links between dysregulated expres-

sion of glycolytic genes in NSCLC and musculoskeletal ageing. Regarding satellite cell func-

tion, Fausnacht et al. [99] observed that diet had a greater influence on satellite cell function

than ageing, however their study was in vitro and ageing still influenced (alongside body mass

index) the response of satellite cells depending on substrate availability.

This is the first study that examined the potential role of DEGs and their interactome as

gene biomarkers in musculoskeletal ageing and NSCLC, using 14 publicly available datasets

with a total of 1156 participants. By doing so, we applied a multi-algorithmic protein-interac-

tion based strategy which employed diverse levels of filtering beyond gene expression.

Our study was also prone to limitations. Although expression profiling by array of the

included datasets was performed using similar platforms, studies with heterogeneous platform

use were excluded, preventing the more powerful and reliable detection of potential DEGs.

Even then, lab effects have a known impact in gene profiling which often results in different

scales of measurement that inevitably lowers the number of integrated DEGs [100]. Evident of

this is the difference in DEGs between the musculoskeletal ageing and NSCLC datasets, with

the former group being less than 45% in total DEG count. However, this is a well-described

drawback in the literature and experimental variation between labs may prevail, even following

normalization [101–104]. Lastly, it was not feasible to control for other potential confounders

in gene expression such as demographic characteristics (e.g. sex, age, race), clinicopathological

characteristics beyond cancer stage (e.g. nodal metastasis status) and medical comorbidities

(e.g., obesity) in the patients with NSCLC from the included datasets, which hinders the true

association with musculoskeletal ageing [105, 106].

The physiological burden of age-related muscle dysfunction due to increased prevalence of

sarcopenia and NSCLC remains a challenge. Studies identifying key genes that mediate the sar-

copenia-cancer cachexia crosstalk may provide valuable insight in developing targeted phar-

macological and/or exercise and nutritional interventions, aiming to promote higher quality

of life and alleviate poor outcomes. Our study showed that MRPs, MRPS26, MRPS17,

MRPL18, and MRPL51 exhibited multi-algorithmic topological significance among DEGs

from musculoskeletal ageing and NSCLC samples, suggesting the potential involvement of the

PLOS ONE Mitochondrial dysregulation in musculoskeletal ageing and non-small cell lung cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0273766 September 6, 2022 11 / 18

https://doi.org/10.1371/journal.pone.0273766


mitochondrial microenvironment as a link between these conditions. Experimental studies in

humans are warranted to validate the diagnostic and prognostic value of MRPs in older

patients with sarcopenia and NSCLC progression.
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