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A Regularized Cross-layer Ladder Network for
Intrusion Detection in Industrial Internet-of-Things

Abstract—As part of BigData trends, the ubiquitous use of
the Internet-of-Things (IoT) in the industrial environment has
generated a significant amount of network traffic. In this type
of IoT industrial network where there is a large equipment
heterogeneity, security is a fundamental issue, thus it is very
important to detect likely intrusion behaviors. Furthermore,
since the proportion of labeled data records is small in IoT
environment, it is challenging to detect various attacks and
intrusions accurately. This investigation builds a semi-supervised
ladder network model for intrusion detection in IIoT. This
model considers the manifold distribution of high-dimensional
data and incorporated a manifold regularization constraint in
the decoder of the ladder network. Meanwhile, the feature
propagation between layers is strengthened by adding more
cross-layer connections in this model. On this basis, a random
attention-based data fusion approach to generate global features
for intrusion detection. The experiments on CIC-IDS2018 show
that the proposed approach can recognize the intrusion with less
false alarm rate, whilst model training is time-efficient.

Index Terms—industrial internet-of-things, heterogeneity, lad-
der network, network intrusion detection, manifold regulariza-
tion

I. INTRODUCTION

With the advancement of industrial informatization and
the internet-of-things(IoT) development, the external network
can openly access the traditional enclosed industrial control
system. Various heterogeneous devices are interconnected via
the sensing techniques, forming an industrial IoT(IIoT)[1]. The
gigantic volume of industrial data has to be transferred over the
network through various applications[2]. The significant inno-
vation in industry and business makes the industrial data face
more new cybersecurity threats due to the security deficiencies
of the massive sensing devices. IIoT is a large-scale network
with three layers, including the application layer, the network
layer, and the perception layer, as shown in Fig.1. It makes
the sensing devices interconnected with the industrial control
network, significantly improving manufacturing efficiency.

The traditional control system to be openly accessed through
IIoT network, which poses severe threats to its security[3],
[4]. In 2014, more than 30% intelligent electric meters of the
top-three power supply providers in Spain exhibited serious
security holes[5]. Attackers can use these deficiencies for
electric charge fraud or closing power supply systems. To
further illustrate the importance of privacy and security given
the current IoT trends, in 2015, the BlackEnergy virus caused
an extensive blackout in Ukraine [6]. Furthermore, the Mirai
botnet infected more than 2 million intelligent devices for
launching large-scale denial-of-service (DoS) attacks in 2016
[7]. While in 2018, more than 17 risk holes, including default
password and bypass identity authentication, were detected
from smart cities[8], and these holes can be utilized to control
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Fig. 1: The architecture of an IIoT

the alarm systems, tamper sensor data, and easily control the
urban transport, causing severe results.

These intrusion events illustrate that the IIoT faces severe
threats of complex and diverse malicious attacks. Although
intrusion detection has been researched for many years, there
are still many security issues to be addressed[9], [10], [11].
Previous researches provide some support for intrusion de-
tection in IIoT. However, it has plenty of difficulties in
dealing with the vast amounts of unstructured, noisy, high-
dimensional, and unlabeled data [12].

Deep learning can provide a robust solution due to its
powerful ability in high-efficient automatic feature extraction
from a massive dataset[13]. Many deep learning-based intru-
sion detection techniques depend on supervised learning on
a large amount of labeled training data which is costly and
becomes infeasible for the massive unlabeled data generated
by IIoT. Therefore, it is critical to use the vast amounts of
unlabeled data and build an unsupervised or semi-supervised
deep learning-based model for practical applications, such as
intrusion detection.

Semi-supervised learning can use the small amounts of
available labeled data and huge amounts of unlabeled data
for model training, which achieves the equivalent performance
to that of the supervised learning. Driven by the practical
requirements, this work aims to utilize the high-dimensional
and unlabeled data in IIoT and builds a semi-supervised deep
learning model for intrusion detection. This research advances
state of the art in IoT network intrusion detection mechanisms
via the following contributions:
• A semi-supervised ladder network is built in the het-

erogeneous domains for training with large amounts of
unlabeled data in IIoT. This model improves the lad-
der network by adding dense cross-layer connections
and manifold regularization. Therefore, more preserved
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features can be used in model training to avoid model
degradation issues.

• An improved random attention mechanism estimates the
importance score concerning the important feature infor-
mation and makes it independent of the training data.
On this basis, a data fusion technique is proposed to
extract heterogeneous features, which are integrated with
the features trained by the ladder network. It helps to
reduce the dependency on the training data and accelerate
the speed of model training.

• The excellent performance of the proposed technique in
IIoT intrusion detection is demonstrated. It can satisfy the
demands of network intrusion detection in heterogeneous
industrial IoT environments.

The remaining paper is organized as follows. Section II
analyzes the state-of-art in intrusion detection. Section III
introduces the proposed model, and Section IV describes
the intrusion detection algorithm. Section IV evaluates the
performance of the proposed algorithm, and finally, concluding
remarks and future directions are given in Section V.

II. RELATED WORK

With the consideration of the proportion of the labeled
data, the deep learning-based intrusion detection techniques
can be classified into three types, supervised learning[14][15],
unsupervised learning[16][17] and semi-supervised learning
[18][19]. At present, research has focused on unsupervised and
semi-supervised learning. The latter can fully utilize the small
number of labels and achieve better performance. Notably,
considering the gigantic volume of unlabeled network data in
IIoT, it is exciting to use the gigantic volume of unlabeled data
for training, which increases the generalization ability of the
models to a new domain. In this section, previous researches in
intrusion detection of IIoT by using semi-supervised learning
models are investigated as follows.

The hackers may gain authority to attack the IIoT in a
long interval, which is difficult to be detected by common
machine learning schemes due to the requirements of expert
knowledge. By considering this, Li et al.[20] proposed a
bidirectional long and short-term memory network with a
multi-feature layer. This model can learn the corresponding
attack interval from historical data, which greatly enhanced the
efficiency to detect attacks in different intervals. Besides, Li
et al. [21] focused on semi-supervised learning and designed
an intrusion detection technique by applying a disagreement-
based semi-supervised learning algorithm for collaborative
intrusion detection. Dutta et al. [22] utilized a two-step process
for the detection of network anomalies. In the first stage, a
Deep Sparse AutoEncoder (DSAE) is employed for data pre-
processing, thus solving the feature engineering problem. In
the second phase, a stacking ensemble learning approach is
utilized for classification.

Several researches concentrate on the time series. Kong
et al. [23] proposed an integrated deep generative model by
combining the generative adversarial networks based on bi-
directional LSTM and attention mechanism, which can capture
the time series dependence. The reconstruction loss and gen-
eration loss test the input of sample training space and random

latent space. Yin et al.[24] utilized the two-stage sliding
window in data pre-processing to learn better representations
of time series. It is helpful to extract high-level features in the
integrated model. The spatial and temporal features are then
extracted in CNN and recurrent autoencoder for the classifica-
tion in fully connected networks. Abdel-Basset et al. [25] pro-
posed a multi-scale residual temporal convolutional module by
learning the spatiotemporal representations and introduced an
improved attention mechanism for the extraction of the global
feature. Finally, a semi-supervised model was implemented
for intrusion detection in IoT. Cheng et al. [26] proposed a
semi-supervised hierarchical stacking temporal convolutional
network for intrusion detection in IoT. It can train unlabeled
data based on a small number of labeled data. This algorithm’s
accuracy is directly related to the effectiveness threshold, and
the detection efficiency could potentially be further optimized.
Shailendra et al. [27] proposed a semi-supervised model by
combining the extreme learning machine and fuzzy C means
method for intrusion detection in IoT. It has solved the
vulnerability issue of a centrally deployed intrusion detection
system, but the model faces the overfitting issue. Furthermore,
the model performance achieved with this technique depends
on setting a good confidence value. For realizing a distributed
intrusion detection framework, Chiu et al. [28] proposed an
edge learning system based on semi-supervised learning and
federated learning techniques. Besides, a federated swapping
operation is proposed to replace the partial federated learning
operation based on a few shared data during federated training.

As the unsupervised learning reserves the original informa-
tion as more as possible and the supervised learning mainly
concerns the information related to supervised task. In majority
of above semi-supervised schemes, both stages of the unsu-
pervised learning and supervised learning are separate while
actually both requirements should be satisfied simultaneously
in semi-supervised task.

As a semi-supervised model, ladder network integrates the
supervised learning and unsupervised learning in a framework.
It was firstly proposed by Valpola[29], which proved the
effectiveness of using lateral shortcut connections to aid the
deep unsupervised learning. The idea of a ladder network
was further extended by Rasmus et al. [30] to support the
supervised learning. Their researches added the classification
and regression to the unsupervised reconstruction of inputs via
a de-noising autoencoder. Finally, Pezeshki et al.[31] investi-
gated the various components that affected the ladder network.
They noticed that the lateral connections between encoder
and decoder and the addition of noise at each layer of the
network could significantly enhance the performance. Many
researchers proposed new ladder network architectures for
various applications, such as the laplacian ladder network[32].

In this work, we consider the gigantic volume of unlabeled
IIoT data with high-dimensional features and attempt to use
the ladder network framework in the proposed model. The
deep learning models such as Autoencoders and restricted
Boltzmann machines may ignore the manifold information
of high-dimensional data and generate some unmeaning
features[32]. These features are useless for model training
in practical applications. Besides, the strengthened feature
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propagation from preceding layers is positive to improve
model performance[33]. For these considerations, we proposed
a ladder network based deep learning model for intrusion
detection. It is a semi-supervised learning model that considers
the manifold distribution of high-dimensional IIoT data and
maximizes the propagation of the detailed features between
layers. Besides, a random attention-based data fusion approach
is proposed to generate global features for intrusion detection.

III. PROPOSED FRAMEWORK AND MODEL

A. Motivation

As stated in Section II, the labels of network traffic in IIoT
are limited. This study aims to increase the generalization abil-
ity of previous intrusion detection models of IIoT with unsu-
pervised tasks and unlabeled data from several heterogeneous
domains. The motivations aim at solving the unsupervised
learning problems, which aid the primary intrusion recognition
task. The available labeled data records should be fully used,
which are expensive to annotate. Therefore, we establish a
learning framework where the features of all heterogeneous
domains are jointly learned due to the dependencies among
multiple attributes of different domains. The ladder network is
proposed to leverage unlabeled data effectively. Collectively,
we create a semi-supervised intrusion detection model that
effectively generalizes to new domains.

B. Regularized Cross-layer Ladder Network

The ladder network usually assumes that the data is dis-
tributed in a high-dimensional Euclidean space, which can be
mapped to a low-dimensional manifold space. The case that
the original data may distribute in a low-dimensional manifold
space is not considered. In this case, the ladder network
structure easily ignores the local feature of low-dimensional
data, which will affect the accuracy of intrusion detection. This
work aims to address this issue by proposing a regularized
cross-layer ladder network to accurately classify network
traffic from different domains and enhance the generalization
ability, as described further.

The regularized cross-layer ladder network is established on
the basic structure of the traditional ladder network, including
a noisy encoder, a noisy decoder, and a clean encoder. This
model introduces the concept of DenseNets proposed in [33]
and manifold regularization[34] as depicted in Fig.2. In the
regularized cross-layer ladder network, more lateral and verti-
cal cross-layer connections are added to preserve more features
and maximize the information transmission among layers. In
addition, the manifold regularization constraints are included
in each decoding layer to preserve the same low-dimensional
structure with the input data in the decoding.

1) Encoder: There are two encoders, one for noisy inputs
and another for cleaning inputs. The encoder consists of a
multilayer perceptron. Gaussian noise with variance σ2 is
added to each encoder layer. Let the Gaussian noise parameter
be denoted by ε. We have ε = N(0, σ2). Therefore, the input
data x of the noisy encoder becomes x̃ = x+ ε. After adding
the noise, the hidden layer h̃(i) can be expressed by Eq.(1).
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Fig. 2: Regularized cross-layer ladder network

h̃(i) = f(W(i)
e x̃(i) + α(i)), 1 ≤ i ≤ L. (1)

f is the encoding mapping function. W(i)
e and α(i) are

respectively the weight matrix and the bias value of the i-
th encoding layer. For the first layer of the encoder, we have
h̃(0) = x̃.

This model utilizes the thought of cross-layer connection.
The vertical connections are added among the encoding layers.
Besides, each layer of the noisy encoder is connected to each
decoder layer. For this reason, the input of each encoding layer
comes from all of the layers ahead. Accordingly, the output of
each encoding layer will be connected to the input of the layers
behind it. After encoding, the data will be further normalized,
and then Gaussian noise will be added as Eq.(2).

z̃(i) = G(W(i)
e [h̃(0), h̃(1), . . . , h̃(i−1)]) + ε, 1 ≤ i ≤ L. (2)

Here, G is the normalized function. The output of the hidden
layer could be expressed as Eq.(3).

h̃(i) = f(µ(i)(z̃(i) + η(i)), 1 ≤ i ≤ L. (3)

µ and η are standardized coefficients of the i-th encoding
layer. At the L-layer, the classification function can predict
the class of network behavior and output the probability of the
network behavior belonging to a specific class. The process of
the clean encoder is similar to that of the noisy encoder.

2) Decoder: The decoder g can be utilized to reconfigure
the encoding value and generate the original input. The ex-
pression of the decoder is as Eq.(4).

ĥ(i) = g(W(i)
d ĥ(i) + β(i)), 1 ≤ i ≤ L. (4)

W(i)
d and β(i) are respectively the weight matrix and the bias

value of the i-th decoding layer. The reconfigured ĥ(i) has the
same shape to x̃. Each encoding layer will be connected to
all of the decoding layers. Thus, it maximally preserves and
transmits the features between the encoder and the decoder
layers. In this case, each decoding layer should consider
the noise from all the encoding layers, and the reconfigured
information can be expressed as follows:

ẑ(i) =

{
gk(W(i)

d z̃k,G(ỹ)),i = L,

gk(W(i)
d z̃k,G(W (i+1)

d ẑ
(i+1)
k ),0 ≤ i ≤ L− 1.

(5)
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Herein, z̃k = [z̃
(0)
k , z̃

(1)
k , . . . , z̃

(L)
k ] is the combination of

the noise from all encoding layers. ẑ(i+1)
k is the output of k-

th neuron of (i + 1)-th decoding layer. W(i)
d is the weight

matrix of the i-th decoding layer. Finally, we have x̂ = ẑ(0).
The network behavior of data in an industrial IoT envi-

ronment is high-dimensional. However, the traditional lad-
der network usually ignores the low-dimensional manifold
structure information of high-dimensional data, which will
affect the accuracy of intrusion detection; thus, to enhance
the discernment ability of feature extraction and generalization
ability of the model, the manifold regularization constraints are
generated and added into each layer.

The overall loss for the ladder network is given by

Cladder = λCsup + Crec + Creg, (6)

where Csup, Crec and Creg denote the supervised loss, the
reconfiguration error and the manifold regularization con-
straints respectively. λ =

√
Mm+Mu

Mm
is the dynamical weight

coefficient of supervised cost function. Mm and Mu are
respectively the number of labeled samples and unlabeled
samples.

If there are n heterogeneous domains, the addition of the
random attention makes the overall loss be given by

Cladder+att = λCsup + Crec + Creg + Catt, (7)

where Catt = θ1C1 + θ2C2 + · · ·+ θnCn represents learning
for the features in n heterogeneous domains. The elements in
θi, i ∈ [1, 2, · · · , n] are hyper-parameters, where θ ∈ [0, 1] and
θ1 + θ2 + · · ·+ θn=1.

3) Random Attention: The random attention mechanism
can make the model concentrate on the important information.
In a heterogeneous dataset, given the input x ∈Ml×d, a feature
matrix satisfies A ∈Mn×n. Herein, l represents the length of
the input sequence. d is the number of feature dimensionalities.
n is the model dimension. First, the d-dimensional input will
be mapped to a n-dimensional B via a parameterized matrix
T , namely B = MT . Two matrixes M1,M2 ∈ Mn×n are
randomly initialized. A matrix M is generated by calculating
M =M1×M2, which can be used for calculating the attention
score si = em1∑n

j=1 erj
. Given a matrix M , the score matrix G

will be generated via the Softmax function F . Finally, the
attention matrix Aatt = Softmax(M)B is generated.

4) Feature Fusion: The feature fusion is to integrate the
local feature and the global feature. In IIoT intrusion detection,
a specific attack may have several features. It is critical to
adjust the limitation of local feature and global feature fusion.
The feature extraction can generate two feature matrixes,
which can be integrated by setting a learning parameter.

H = [1− φ(α)]Aatt ⊕ φ(α)Aln (8)

where ⊕ is the connection between two elements. α is a
learning parameter which can be set as 0.5 initially. φ(·) is
a function to make the updated α fall into the range of [0,1].

φ(x) =


1,x > 1

0,x < 0

x,others

(9)

IV. ALGORITHM DESCRIPTION

A semi-supervised intrusion detection algorithm is proposed
based on the regularized cross-layer ladder network (RCLN).
Since the original network dataset is high-dimensional and
redundant, it should be firstly pre-processed. In the RCLN
algorithm, the training dataset is then analyzed, and the non-
linear manifold regularization and random attention mecha-
nism are utilized for feature extraction. The redundant features
which affect the detection accuracy are then removed. The
network intrusion detection issue is subsequently transformed
into a training dataset combined with a regularized cross-
layer ladder network. Finally, the behavior of network data
is then analyzed for accurate recognition and classification of
intrusion. The details of the algorithm are described next.

1) Data preprocessing: Each present feature’s evaluation
metric and data dimension in a network behavior dataset are
different. For such data, the direct calculation may cause an
inaccurate analysis result. The original data usually requires
data preprocessing to eliminate the influence of data dimen-
sion and unit on classification results, such as data cleaning,
normalization. Data cleaning is to enhance the quality of
dataset. As for normalization, the data are mapped into the
range between zero and one, and all-dimensional data are
transformed into non-dimensional data. Following formulation
expresses data normalization as:

x′ =
x−min(x)

max(x)−min(x)
, (10)

where x′ corresponds to the normalized characteristic data, x
is the original data sample, min(x) represents the minimum
value in the original characteristic data sample, and max(x) is
the maximum value in the original characteristic data sample.

2) Data encoding and classification: The normalized data
samples are divided into labeled and unlabeled network data.
The former can train the standard feedforward neural network,
which is regarded as the encoder of the cross-layer ladder
network, whilst the latter will be inputted into both the noisy
and clean encoders for training.

At each layer, the input data should realize clean encoding
and noisy encoding, as the clean encoding can be used
to calculate the unsupervised cost. For noisy encoding, the
random Gaussian noise is added to the data at each layer for
better generalization ability of the training model. Thus, clean
and noisy encoding is generated for the input data at each
layer after several iterations.

3) Data decoding and de-noising: The construction of
decoder aims to support the unsupervised learning of the
unlabeled network data. Subsequently, the trained result of
supervised learning can be analyzed. By using the designed
de-noising function g , ĥ(i) = g(h̃(k), ĥ(i+1)), the optimal
estimation of clean data at the hidden layers can be generated.

4) Calculation of loss function: The total loss function can
be used to measure the difference between the predicted result
and the actual result. It is calculated by considering the su-
pervised loss function, reconfiguration error, and regularization
constraint in this section. The optimization goal is to minimize
the total loss. After this step, it generates a function P (y|x)
to classify the network behavior of the sample data.
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5) Error backpropagation and parameter update: Next, the
partial derivative of the loss function is calculated and updated
using the gradient descent method, and finally, the error is
propagated back to optimize the model parameter.

The pseudo-code of the proposed intrusion detection algo-
rithm is described as follows.

Algorithm RCLN Algorithm.

Input:
Dataset xi with Mm labeled and Mu unlabeled;

Output:
classification result CR ;

1: x← x+N(0, σ2);
2: h̃(0) ← z̃(0) ← x;
3: for i = 1 to L do
4: z̃

(i)
p ←W(i)

e [h(0), h(1), . . . , h(i−1)];
5: z̃(i) ← G(z̃(i)p ) +N(0, σ2);
6: h̃(i) ← f(µ(i)(z̃(i)) + η(i));
7: end for
8: P (ỹ|x)← ĥ(L);
9: for i = L to 0 do

10: if i = L then
11: ẑ(i) ← gk(W(i)

d [z̃
(0)
k , z̃

(1)
k , . . . , z̃

(L)
k ],G(ỹ));

12: else
13: ẑ(i) ← gK(W(i)

d [z̃
(0)
k , z̃

(1)
k , . . . , z̃

(L)
k ],G(W(i+1)

d ẑ
(i+1)
k ));

14: end if
15: end for
16: h(0) ← z(0) ← x;
17: for i = 1 to L do
18: z

(i)
p ←W(i)

e [h(0), h(1), . . . , h(i−1)];
19: z(i) ← G(z(i)p );
20: h(i) ← f(µ(k)(z̃(i)) + η(i));
21: end for
22: P (y|x)← h((L)1 , h((L)2 , · · · , h((L)n ;
23: train with the total cost function Cladder+att =√

Mm+Mu

Mm
(Cne + Cce) + Crec + Creg + Catt;

24: perform error backpropagation;
25: update the weight of the encoder with gradient descent;
26: generate CR with P ;
27: return CR.

V. PERFORMANCE EVALUATION

A. Dataset Preparation

In this section, the experiments are conducted on the CIC-
IDS2018 dataset[35]. It is a widely used dataset in the intru-
sion detection field. The dataset will be firstly pre-processed
before training. In this work, we use 10% percentage of data
records in CIC-IDS2018 for evaluation, which is divided into
three groups, including 60% training data, 20% validation data,
and 20% testing data. The model is evaluated on the pre-
processed dataset for performance comparison.

B. Performance Criteria

Detection accuracy is the ratio of correctly recognized data
and the total number of records in a dataset, denoted by

accuracy, as it directly reflects the classification effect of the
proposed model.

Precision measures the number of correct classifications of
normal behavior and intrusion outliers penalized by the num-
ber of incorrect classifications, which is denoted by precision.

The Recall is the ratio of the number of correct classifica-
tions to the number of missed entries, as denoted by recall.

F1-core (f1) is to measure the weighted average of the
precision and the recall. It falls in the range of [0,1].

The True Positive Rate (TPR) measures the proportion of
intrusion outliers that are correctly identified.

The False Positive Rate (FPR) is the ratio of the number
of mislabeled outliers to the number of normal behaviors. This
metric can evaluate the reliability of the classification model.
So, it is broadly utilized in performance evaluation.

Experiments mainly involve performance in terms of classi-
fication accuracy, detection reliability, and detection efficiency.
The classification accuracy is measured by accuracy. The
detection reliability is evaluated by TPR and FPR. The
detection efficiency is measured by the detection time and
overhead.

C. Comparison Baselines

The proposed model is compared to several ladder network
models and two typical semi-supervised intrusion detection
models for an overall evaluation of the performance.

The following ladder network models are chosen as the
baselines. TypicalLN is the original ladder network[30]. Lapla-
cianLN model is Laplacian Ladder Network[32] by adding
Laplacian constraints. DenseLLN model improves the LLN
by adding dense connections[33].

Two intrusion detection models are utilized for comparison.
The semi-supervised SMLC model [36] realized a multi-
clustering model for detection and prevention of intrusion, and
the HS-TCN model[26] implemented a temporal convolutional
network for intrusion detection.

D. Evaluation Results

As a semi-supervised model, the growth of labeled sample
proportion will affect intrusion detection results. By analyzing
some previous researches, such as [36], it performs a good
performance when the labeled sample proportion is 10%,
which is equivalent to that when the labeled sample proportion
is 90%. However, the performance with the labeled sample
proportion less than 10% is not shown. As for a large-scale
dataset, 10% labeled samples will be a big dataset. In this
case, this section considers the small labeled proportion that
is less than 10% for evaluation. The proportion is set as 2%,
4%, 6%, 8% and 10%. For better comparison, results for the
labeled sample proportion 10% are available on Table.I. In
this table, DenseLLN shows better accuracy than the other
two ladder networks, and RCLN has improved the accuracy
by 6.35%. Compared to the semi-supervised models SMLC
and HS-TCN, the accuracy increase is also encouraging. For
the precision, recall, and f1 score metrics, the proposed RCLN
is also superior to the baseline models.



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL.XX, NO.XX, JULY 2021 6

TABLE I: Evaluation results when the labeled sample
proportion is 10%

Metric accuracy precision recall f1

TypicalLN 0.843 0.822 0.857 0.832

LaplacianLN 0.866 0.853 0.864 0.859

DenseLLN 0.914 0.908 0.923 0.911

SMLC 0.947 0.955 0.953 0.951

HS-TCN 0.953 0.946 0.961 0.949

RCLN 0.972 0.965 0.968 0.968

1) Accuracy Performance: Accuracy reflects whether the
classification is accurate. Here, we consider the evaluation
results with various labeled sample proportions and show the
comparison curves with SMLC and HS-TCN in Fig.3.
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Fig. 3: Performance curves with various labeled sample
proportions. (a)accuracy. (b)accuracy growth.

In the Fig.3, the classification accuracy is measured. In
Fig.3(a), the performance of RCLN outperforms the Typi-
calLN, LaplacianLN, and DenseLLN, which demonstrates the
effective improvements. Both the SMLC and HS-TCN achieve
high accuracy in their datasets. Compared to the SMLC and
HS-TCN, the RCLN model can rapidly achieve high perfor-
mance with a labeled sample proportion of more than 4%. The
accuracy achieves 0.972 when the labeled sample proportion is
10%. In Fig.3(b), the histograms for the growth of accuracy by
comparing SMLC and HS-TCN are described. By analysis, the
proposed RCLN model improved an effective semi-supervised
model and utilized the random attention mechanism in feature
fusion.

The error reduction percentage is utilized to evaluate the
significance of the proposed RCLN. Assume the accuracy
values of SMLC, HS-TCN and RCLN are respectively accS ,
accH , and accR when the labeled sample proportion is 10%.
the detection error e = 1− acc. For example, eR = 1− accR.
Therefore, the error reduction erR S(%) and erR H(%) re-
spectively for SMLC and HS-TCN can be calculated as
follows:

erR S(%) =
eS − eR
eS

=
accR − accS
1− accS

(11)

erR H(%) =
eH − eR
eH

=
accR − accH
1− accH

(12)
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Fig. 4: Error reduction diagram with various labeled sample
proportions.

The erR S(%) and erR H(%) are also compared for various
labeled sample proportions. The results are shown in Fig.4.
In this Figure, RCLN achieves an error reduction of 70.84%
based on SMLC using the labeled sample proportion value
of 4%. Compared to HS-TCN, RCLN has reduced the detec-
tion error by 40.42% when the labeled sample proportion is
10%. Therefore, it demonstrates that the proposed model can
significantly reduce the detection error.

2) Detection Reliability: A group of experiments is con-
ducted by comparing the results under different labeled sam-
ples, whereas FPR and TPR can measure the detection relia-
bility. By setting the labeled sample proportion r by 2%, 4%,
6%, 8%, and 10%, the RCLN is compared to the baselines.
The results are depicted in Fig. 5 and Fig.6.

These models are evaluated for various values of r, directly
reflecting the effects of the improved model. In Fig.5 and
Fig.6, we evaluate the FPR and TPR with the Gaussian
variance σ2 = 1. The results show that the RCLN achieves the
best performance of FPR and TPR among the ladder network
models. It proves that the improvement of the training model is
effective. From this figure, we can also see that the change rate
of FPR and TPR is less with the growth of the labeled sample
proportion. By analyzing the reason, the network model is
semi-supervised. It can realize the model training and extract
the feature of the dataset with a small labeled sample propor-
tion r. Our model achieves the highest TPR. At this time, the
training is equivalent to the supervised learning model. With
the growth of r, the classification accuracy performance of
the baseline models becomes higher. Since these models are
semi-supervised, the r value will directly affect the detection
accuracy. By analyzing the change of TPR, we can see that
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Fig. 5: FPR curves with various labeled sample proportions.
(a)FPR. (b)FPR growth.

the TPR change rate of TypicalLN is the lowest, and that
of the RCLN model is the largest. It demonstrates that the
improvement of TypicalLN is effective.

3) Detection Efficiency: Due to the resource-constrained
feature of the IIoT environment and the time-sensitivity of
intrusion detection, the detection efficiency and computational
cost are evaluated to attain the best performance. In this work,
we have conducted the experiments on a server composed
of one Intel Xeon E5-2678 CPU with 62G memory, and
the detection time and computation overhead are evaluated
in this section. The detection time of three semi-supervised
models is evaluated, and the reduction of detection time is
compared. The reduction results are shown in Fig.7. In this
figure, dtR S(%) and dtR H(%) represent the reduction of
detection time by comparing RCLN to SMLC and HS-TCN
respectively. With the growth of the labeled sample proportion,
the RCLN has a reduction exceeding 10% at least. The results
show the reduction of dtR S(%) achieves 21.86% when r=0.1
and dtR H(%) achieves 14.35% when r=0.08. It demonstrates
that the RCLN has improved its efficiency by 21.86% and
14.35% compared to SMLC and HS-TCN.

Besides, we also evaluate the overhead in model training,
and the results are shown in Fig.8. This figure shows the
overhead growth within 30 seconds. The average growth of
CPU overhead and memory overhead is respectively 16.92%
and 13.58%. In the beginning, the CPU overhead and memory
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Fig. 6: TPR curves with various labeled sample proportions.

(a)TPR. (b)TPR growth.
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Fig. 7: Error reduction curves with various labeled sample
proportions.

overhead grow rapidly and gradually become stable.

CONCLUSIONS AND FUTURE WORK

This work considered the features of heterogeneity and
variety in industrial IoT network data and then proposed a
regularized cross-layer ladder network for intrusion detection.
It is an improved semi-supervised intrusion detection model
suitable for dealing with massive unlabeled data. Besides, we
proposed a random attention-based data fusion approach to
generate the global features on the heterogeneous dataset, as
more features are used in model training. The regularization
constraints are added to the decoder in the ladder network
to enhance the model’s generalization ability. The proposed
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model is evaluated on the CIC-IDS2018 dataset. The results
show it can recognize the intrusion with less false alarm rate,
and the model training is time-efficient. As network traffic in
IIoT may be collected from different heterogeneous domains.
The intrusion detection model should be multi-task learning on
the traffic collected from several domains rather than single-
task learning on the traffic from a specific domain. So, the next
work will consider the intrusion detection based on multi-task
learning and research the multi-modal data fusion mechanism.
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