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ABSTRACT
Background: Estimating relative causal effects (i.e., “substitution
effects”) is a common aim of nutritional research. In observational
data, this is usually attempted using 1 of 2 statistical modeling
approaches: the leave-one-out model and the energy partition
model. Despite their widespread use, there are concerns that neither
approach is well understood in practice.
Objectives: We aimed to explore and illustrate the theory and
performance of the leave-one-out and energy partition models for
estimating substitution effects in nutritional epidemiology.
Methods: Monte Carlo data simulations were used to illustrate
the theory and performance of both the leave-one-out model and
energy partition model, by considering 3 broad types of causal
effect estimands: 1) direct substitutions of the exposure with a
single component, 2) inadvertent substitutions of the exposure with
several components, and 3) average relative causal effects of the
exposure instead of all other dietary sources. Models containing
macronutrients, foods measured in calories, and foods measured in
grams were all examined.
Results: The leave-one-out and energy partition models both per-
formed equally well when the target estimand involved substituting
a single exposure with a single component, provided all variables
were measured in the same units. Bias occurred when the substitution
involved >1 substituting component. Leave-one-out models that
examined foods in mass while adjusting for total energy intake
evaluated obscure estimands.
Conclusions: Regardless of the approach, substitution models need
to be constructed from clearly defined causal effect estimands.
Estimands involving a single exposure and a single substituting
component are typically estimated more accurately than estimands
involving more complex substitutions. The practice of examining
foods measured in grams or portions while adjusting for total energy
intake is likely to deliver obscure relative effect estimands with
unclear interpretations. Am J Clin Nutr 2022;00:1–10.

Keywords: nutritional epidemiology, substitution models, substitu-
tion analysis, estimand, causal inference, compositional data

Introduction
Dietary guidelines often recommend substituting certain

nutrients or foods with healthier alternatives. For instance, the

United Kingdom’s Scientific Advisory Committee on Nutrition
recommends substituting saturated fats with unsaturated fats, to
help ensure that saturated fats do not contribute >10% to total
energy (1). Other examples include recommendations to replace
refined grains with whole grains (2), and sugars with complex
carbohydrates (3). Substitutions like these are typically informed
by the cumulative evidence from both randomized control trials
and prospective cohort studies.

In experimental studies, food substitutions are examined
by conducting isocaloric dietary interventions (4). In contrast,
observational studies must rely on estimating substitution
effects using statistical methods and 2 approaches have become
common. The first, known as the leave-one-out model, is a
variation of the “standard model” for energy intake adjustment
(5). Conceived as a means to emulate isocaloric interventions,
this approach involves adjusting for total energy intake and
all dietary sources except those being substituted with the
exposure. The second approach, known as the energy partition
model, involves including all sources of total energy intake as
model covariates and subsequently subtracting the regression
coefficients to estimate the substitution (6, 7).

Despite many previous attempts to explain the theory of
substitution modeling in nutritional epidemiology (5, 8–11), and
although both the leave-one-out and energy partition models
are common in practice (5), there are concerns that they are
not well understood (5, 9, 10). This study hence aims to

Author disclosures: PWGT and MSG are both directors of Causal Insights
Ltd, which sells causal inference research and training; the company and the
authors may therefore benefit from any study that demonstrates the value of
causal inference methods.

GDT was supported by PhD funding from The Alan Turing Institute
(EP/N510129/1). The Alan Turing Institute had no involvement in the study
design; data simulation, analysis, and interpretation; report writing; and
restrictions on the submission of the report for publication.

Supplemental Tables 1 and 2 and Supplemental Methods are available from
the “Supplementary data” link in the online posting of the article and from the
same link in the online table of contents at https://academic.oup.com/ajcn/.

Address correspondence to GDT (e-mail: g.d.tomova@leeds.ac.uk).
Received December 7, 2021. Accepted for publication July 27, 2022.
First published online October 13, 2022; doi:

https://doi.org/10.1093/ajcn/nqac188.

Am J Clin Nutr 2022;00:1–10. Printed in USA. © The Author(s) 2022. Published by Oxford University Press on behalf of the American Society for Nutrition.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/ajcn/advance-article/doi/10.1093/ajcn/nqac188/6759427 by Leeds Beckett U

niversity user on 28 O
ctober 2022

https://academic.oup.com/ajcn/
mailto:g.d.tomova@leeds.ac.uk)
https://creativecommons.org/licenses/by/4.0/


2 Tomova et al.

introduce, examine, and illustrate the theory and performance
of the different substitution modeling approaches in nutritional
epidemiology using a causal inference perspective and a series of
illustrative simulations.

Target estimands and modeling approaches

Although the interpretation of substitution models has been
discussed extensively elsewhere (5, 8–11), none have formally
defined the causal effect estimands that these models target.
When a substitution is sought in compositional data, i.e., data
where ≥2 component “part” variables sum to a total “whole”
variable (12), the corresponding target estimand represents a type
of relative causal effect (13). Substitution models thus aim to
estimate the joint effects of increasing the intake of an exposure
while simultaneously decreasing the intake of ≥1 substituting
components to maintain the same total (14, 15).

Depending on their specification, both the leave-one-out model
and energy partition model can be used to estimate a range of
relative effect estimands.

The leave-one-out model.

Because the leave-one-out model adjusts for total energy
intake, and total energy intake is a collider for all sources of
energy intake, it introduces a dependency (i.e., substituting effect)
between all sources of energy intake that are not controlled in
addition (13, 14). If adjustment is made only for the exposure and
total energy intake, then the model estimates the average relative
causal effect (i.e., the relative causal effect of the exposure instead
of all other components) because all other components are free to
contribute to keeping the total fixed (14, 15). For more specific
substitutions, ≥1 components may be adjusted in addition to
prevent them from contributing, thereby removing them from the
substitution. Typically, a single component is left unadjusted (i.e.,
“left out” of the model) to estimate the relative causal effect of
X1 instead of X2, where X1 is the exposure and X2 is the excluded
component, giving the model its name (5). Substitutions between
the exposure and >1 component may also be estimated by leaving
≥2 components unadjusted.

The leave-one-out model may be used to estimate isocaloric
substitution effects for both macronutrients and foods, providing
all components are measured in calories and sum to the total
energy intake. Where foods are measured in grams or portions,
they will not be compositional with total energy. Equal-mass
substitution effects may instead be estimated by adjusting for the
total food intake in grams or portions, respectively, but “mixed
unit” models that adjust for total energy while examining foods in
grams or portions will evaluate obscure estimands. Unfortunately,
it is common for investigators to adjust for total energy intake
without understanding the estimands that are produced (10, 14).

In practice, most leave-one-out models may be inadvertent,
i.e., built without the specific intention of estimating a relative
causal effect. Adjustment for total energy intake is practiced for
a variety of reasons (8), without full appreciation of the impact
on the estimand. For example, it is common for researchers to
adjust for total energy alongside a selection of macronutrients
or foods deemed “important confounders” without reference to
a target substitution estimand (16–20).

The energy partition model and all-components model.

Although mathematically similar to the leave-one-out model,
the energy partition model is philosophically distinct because
it does not directly output substitution effects (7, 21). Instead,
total energy intake is partitioned into constituent components,
which are included as model covariates. The relative causal
effect of X1 instead of X2 is then estimated from the difference
between the β-coefficients for the exposure and the substituting
component. Provided both components are measured in calories,
this will be an isocaloric substitution. Alternatively, the average
relative causal effect may be estimated by including and
comparing terms for the exposure and a summary term for all
“remaining energy intake” (i.e., the total energy intake from
all components except the exposure). Bespoke substitutions can
also be obtained by retaining all components, and explicitly
calculating and comparing the weighted effects. For example,
the average relative causal effect could be calculated from a
model with all components by comparing the coefficient of the
exposure with a weighted sum of the coefficients for all other
components. Although technically a form of the energy partition
model, we have previously named this latter approach the all-
components model to differentiate it from other forms of the
energy partition model (14). Like the leave-one-out model, the
energy partition model can also be used with foods in grams
to estimate equal-mass substitutions, provided the exposure and
substituting components are all measured in grams.

Methods

Illustrative example

To illustrate the theory and performance of each approach
in estimating different relative (substitution) causal effects, we
considered the effects of a macronutrient exposure, nonmilk
extrinsic sugars (or “sugars”; kcal), and a food exposure, meat
(kcal and g), on fasting plasma glucose concentration (FPG). The
choice of exposures and outcome was arbitrary, and the presented
causal effects were chosen for illustration.

Data simulation

Standardized data were simulated with the R package “dagitty”
version 0.3-1 (22) based on a prespecified data generation process
depicted in Figure 1. The simulated data reflect a scenario in
which total energy intake is fully determined by the energy intake
from 7 macronutrients and total food intake is fully determined
by the intake from 9 food groups. The 7 macronutrients were 1)
sugars, 2) complex carbohydrates, 3) fiber, 4) saturated fat, 5)
unsaturated fat, 6) protein, and 7) alcohol; and the 9 food groups
were 1) cereals, 2) dairy, 3) meat, 4) fish, 5) fruits and vegetables,
6) nuts, 7) alcoholic beverages, 8) nonalcoholic beverages, and
9) miscellaneous. Each macronutrient was assigned a unique
effect on FPG using different path coefficients. Target means
and SDs for each macronutrient (kcal) were informed by the
United Kingdom’s National Diet and Nutrition Survey (23), with
SDs capped to ensure convergence (see Supplemental Table 1).
Component macronutrient variables, and component water
variables, were then simulated for each food and their means
and SDs were scaled to match the distribution observed in the
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Substitution models in nutritional epidemiology 3

FIGURE 1 Parametric directed acyclic graph of the simulated data generating process, showing the standardized path coefficients used in the simulation.
This directed acyclic graph uses the notation introduced in Arnold et al. (13), which depicts deterministic variables and deterministic relations using double-
outlined rectangles and double-lined arrows, respectively. Deterministic variables are variables that are fully determined by their parent variables, e.g., total
energy intake is fully determined by the energy intake from the 7 macronutrients, which are in turn fully determined by the energy intake from the 45 component
variables. All deterministic variables were derived from their parent variables; the path coefficients for deterministic relations are therefore not shown. FPG,
fasting plasma glucose.
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National Diet and Nutrition Survey (Supplemental Table 2)
and the target means and SDs for the total intake of each
macronutrient (Supplemental Table 1). Food intakes in calories
were derived by summing the constituent macronutrients, and
food intakes in grams were derived by adding the constituent
macronutrients multiplied by their caloric density, with water
added to match the moisture content observed in the National
Diet and Nutrition Survey. Total energy intake (i.e., total calories
consumed from all dietary sources), total food intake (i.e., total
mass of food consumed from all dietary sources), remaining
energy intake (i.e., total calories consumed from all dietary
sources except the exposure), and remaining food intake (i.e.,
total food consumed from all dietary sources except the exposure)
were calculated directly from the simulated variables to reflect the
deterministic data generation process. In total, 100,000 simulated
data sets were created, each comprising 1000 observations. We
report the median effect estimate and the 2.5th and 97.5th centiles
[representing 95% simulation interval (SI)] for each investigated
model. To aid illustration, effect estimates are expressed in mg/dL
per 100 kcal of nutrients or foods consumed (i.e., mg · dL−1 ·
100 kcal−1) and mg/dL per 100 g of foods consumed (i.e., mg ·
dL−1 · 100 g−1).

Estimands and models examined

We examined 3 types of causal effect estimands across
the 3 dietary unit scenarios of macronutrients (kcal), foods
(kcal), and foods (g). The first group of estimands involved a
direct substitution of the exposure for a single component. For
macronutrients this was the relative causal effect of sugars instead
of protein (R1), and for foods this was the relative causal effect
of meat instead of fish (kcal, R4; and g, R7). The second group of
estimands involved a more complex substitution of the exposure
for several components, as might arise from inadvertently
adjusting for total energy intake without specifically intending
to estimate a relative causal effect. For macronutrients, we
considered the (inadvertent) estimand created by a model that
adjusted for carbohydrates, alcohol, and total energy viewed
as “important confounders”; this was the (inadvertent) relative
causal effect of sugars instead of protein, total fat, and fiber (R2).
For foods, we considered the (inadvertent) estimands created
by models that adjusted for fruit and veg, alcoholic beverages,
nonalcoholic beverages, and total energy or total food; these
were the (inadvertent) relative causal effects of meat instead
of cereal, dairy, fish, nuts, and miscellaneous food in calories
(R5) and grams (R8). The third group of estimands involved a
substitution of the exposure for all other dietary components,
i.e., average relative causal effects. For macronutrients this
was the average relative causal effect of sugars (R3) and for
foods this was the average relative causal effect of meat (kcal,
R6; and g, R9). Each estimand was evaluated using a “same
unit” leave-one-out model, a comprehensive energy partition
(i.e., all-components) model, and, where relevant, a simplified
energy partition model and a “mixed unit” leave-one-out model.
“Same unit” leave-one-out models are isocaloric and equal-mass
models where the components are measured in calories and
grams, respectively, and adjustment is made for total energy
intake and total food intake, respectively. “Mixed unit” leave-
one-out models are obscure models where the components are
measured in grams and adjustment is made for total energy
intake. We compared the estimates obtained from each model

either with the simulated truth (for the macronutrient models)
or with estimates derived from the weighted average of the
macronutrients making up each food (for the food group models).
The Supplemental Methods provide further details of the
estimands and models.

Results
Table 1 summarizes the results of the 24 models.

Macronutrient models

Both the “same unit” leave-one-out and (comprehensive)
energy partition (i.e., all-components) models returned the
true causal effect when the substitution involved a single
macronutrient (R̂1.1 = R̂1.2 = R1 = 3.20 mg/dL/100 kcal, i.e.,
the causal effect of 100 kcal from sugar on FPG was estimated
to be 3.20 mg/dL larger than the effect of 100 kcal coming from
protein, for the same total energy intake).

Where the substitution involved >1 macronutrient, the all-
components model again returned the expected true value (R̂2.2

= R2 = 2.50 mg/dL/100 kcal (i.e., the causal effect of 100 kcal
from sugar on FPG was estimated to be 2.50 mg/dL larger than
the average effect of 100 kcal coming from protein, fat, and fiber,
for the same total energy intake), but the “same unit” leave-
one-out model returned a slightly biased smaller value (R̂2.1 =
2.39 mg/dL/100 kcal).

The all-components model returned the expected true value
for the average relative causal effect of sugar (R̂3.3 = R3 =
1.75 mg/dL/100 kcal, i.e., the causal effect of 100 kcal from sugar
on FPG was estimated to be 1.75 mg/dL larger than the average
effect of 100 kcal coming from all other macronutrients, for the
same total energy intake), but both the “same unit” leave-one-out
model and the simple energy partition model returned the same
slightly biased larger value (R̂3.1 = R̂3.2 = 2.05 mg/dL/100 kcal).

Food group models—in calories

Both the “same unit” leave-one-out and (comprehensive)
energy partition (i.e., all-components) models returned the same
value when the substitution involved a single food (R̂4.1 = R̂4.2 =
0.20 mg/dL/100 kcal, i.e., the causal effect of 100 kcal from meat
on FPG was estimated to be 0.20 mg/dL larger than the effect
of 100 kcal coming from fish, for the same total energy intake),
which was similar to but slightly larger than the expected true
value (R4 = 0.16 mg/dL/100 kcal).

Where the substitution involved >1 variable, both the
“same unit” leave-one-out and all-components models returned
similar values (R̂6.1 = −0.37 mg/dL/100 kcal and R̂5.2 =
−0.35 mg/dL/100 kcal, respectively, i.e., the causal effect of
100 kcal from meat on FPG was estimated to be 0.37 or
0.35 mg/dL smaller than the average effect of 100 kcal coming
from cereal, dairy, fish, nuts, and miscellaneous foods, for the
same total energy intake), both of which were smaller than and
almost half the expected true value (R5 = −0.65 mg/dL/100 kcal).

The all-components model returned an average relative causal
effect of meat (R̂6.3 = −0.47 mg/dL/100 kcal, i.e., the causal
effect of 100 kcal from meat on FPG was estimated to be
0.47 mg/dL smaller than the average effect of 100 kcal coming
from all other foods, for the same total energy intake) that
was smaller than and almost half the expected true value (R6

D
ow

nloaded from
 https://academ

ic.oup.com
/ajcn/advance-article/doi/10.1093/ajcn/nqac188/6759427 by Leeds Beckett U

niversity user on 28 O
ctober 2022



Substitution models in nutritional epidemiology 5
T

A
B

L
E

1
Fu

ll
de

ta
ils

of
th

e
9

es
tim

an
ds

an
d

24
m

od
el

s
ex

am
in

ed
in

th
e

si
m

ul
at

ed
da

ta
1

E
st

im
an

d
M

od
el

E
st

im
an

d
sy

m
bo

l
N

am
e

Si
m

ul
at

ed
or

de
ri

ve
d2

va
lu

e
E

st
im

at
e

sy
m

bo
l

N
am

e
Fo

rm
ul

a
E

st
im

at
ed

va
lu

e
(9

5%
SI

)

R
1

R
el

at
iv

e
ca

us
al

ef
fe

ct
of

su
ga

rs
in

st
ea

d
of

pr
ot

ei
n

3.
20

3
R̂

1.
1

“S
am

e
un

it”
le

av
e-

on
e-

ou
t

F̂P
G

=
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î 4

no
na

lc
be

v
+
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ĥ 1
−

̂
h 2

,3
,4

,6
,9

w
he

re
̂

h 2
,3

,4
,6

,9
=

∑
iw

ih
i

an
d

i
=

{2,
3,

4,
6,

9}
−

0.
35

3
(−

0.
52

,−
0.

19
)

(C
on

ti
nu

ed
)

D
ow

nloaded from
 https://academ

ic.oup.com
/ajcn/advance-article/doi/10.1093/ajcn/nqac188/6759427 by Leeds Beckett U

niversity user on 28 O
ctober 2022



6 Tomova et al.

T
A

B
L

E
1

(C
on

ti
nu

ed
)

E
st

im
an

d
M

od
el

E
st

im
an

d
sy

m
bo

l
N

am
e

Si
m

ul
at

ed
or

de
ri

ve
d2

va
lu

e
E

st
im

at
e

sy
m

bo
l

N
am

e
Fo

rm
ul

a
E

st
im

at
ed

va
lu

e
(9

5%
SI

)

R
6

A
ve

ra
ge

re
la

tiv
e

ca
us

al
ef

fe
ct

of
m

ea
t(

kc
al

)
−

0.
78

3
R̂

6.
1

“S
am

e
un

it”
le

av
e-

on
e-

ou
t

F̂P
G

=
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ŝ 2

R
F

+
ε

R̂
9.

3
=
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= −0.78 mg/dL/100 kcal). Both the “same unit” leave-one-
out model and the simple energy partition model returned
identical estimates that were slightly more biased (R̂6.1 = R̂6.2

= −0.42 mg/dL/100 kcal).

Food group models—in grams

Both the “same unit” leave-one-out and (comprehensive)
energy partition (i.e., all-components) models returned the same
value when the substitution involved a single food and adjustment
was made for total food intake (R̂7.1 = R̂7.3 = 4.81 mg/dL/100 g,
i.e., the causal effect of 100 g from meat on FPG was estimated to
be 4.81 mg/dL larger than the effect of 100 g coming from fish, for
the same total food intake), which was slightly smaller than the
expected true value (R7 = 5.15 mg/dL/100 g). The “mixed unit”
leave-one-out-model that adjusted for total energy intake returned
a radically different value with the opposite sign to both the
isocaloric and equal-mass estimands (R̂7.2 = −0.94 mg/dL/100 g,
i.e., the causal effect of 100 g from meat on FPG was estimated
to be 0.94 mg/dL smaller than the effect of 100 g coming from
fish, for the same total energy intake).

Where the substitution involved >1 variable, both the “same
unit” leave-one-out and all-components models returned similar
values (R̂8.1 = 4.60 mg/dL/100 g and R̂8.3 = 5.42 mg/dL/100 g,
respectively, i.e., the causal effect of 100 g from meat on FPG was
estimated to be 4.60 or 5.42 mg/dL larger than the average effect
of 100 g coming from cereal, dairy, fish, nuts, and miscellaneous
foods, for the same total food intake), which were much larger
than the derived estimate (R8 = 1.44 mg/dL/100 g). The “mixed
unit” leave-one-out-model that adjusted for total energy intake
returned a radically different value of equal sign to the isocaloric
estimand and opposite sign to the equal-mass estimand (R̂8.2

= −1.11 mg/dL/100 g, i.e., the causal effect of 100 g from
meat on FPG was estimated to be 1.11 mg/dL smaller than the
average effect of 100 g coming from cereal, dairy, fish, nuts, and
miscellaneous foods, for the same total energy intake).

The all-components model returned a slightly smaller average
relative causal effect of meat than the expected true value (R̂9.4

= 6.06 mg/dL/100 g compared with R9 = 6.48 mg/dL/100 g,
i.e., the true causal effect of 100 g from meat on FPG was
6.48 mg/dL larger than the average effect of 100 g coming from
all other foods, for the same total food intake). Both the “same
unit” leave-one-out model and the simple energy partition model
returned identical estimates that were larger than the expected
true values (R̂9.1 = R̂9.3 = 8.14 mg/dL/100 g). The “mixed
unit” leave-one-out-model that adjusted for total energy intake
returned a radically different value of equal sign to the isocaloric
estimand and opposite sign to the equal-mass estimand (R̂9.2 =
−1.17 mg/dL/100 g, i.e., the causal effect of 100 g from meat on
FPG was estimated to be 1.17 mg/dL smaller than the average
effect of 100 g coming from all other foods, for the same total
energy intake).

Discussion

Principal findings

This study examined and compared the performance of the
2 most common approaches to estimating relative (i.e., sub-
stitution) effects in nutritional epidemiology. We demonstrated
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that “same unit” leave-one-out models and energy partition
models perform equally well when the target estimand involves
substituting a single exposure with a single component. Once the
substitution involves ≥2 components, both models can produce
biased estimates that diverge from the expected true weighted
average effects.

We have also shown that isocaloric and equal-mass substi-
tution estimates can be reliably estimated using either model
provided all variables are measured in the same units. “Mixed
unit” leave-one-out models that examine foods in mass while
adjusting for total energy intake evaluate obscure estimands that
may be sign discordant from both the isocaloric and equal-mass
estimands.

Analysis and explanation

In substitution modeling, the estimand is determined jointly
by the exposure and by the dietary components chosen for
substitution. There is hence no single “relative causal effect”
but an array of potential estimands that may be considered,
each requiring appropriate modeling and interpretation. Because
nutritional data are compositional, the causal effect being
estimated by a particular model may depend not only on the
components in the model, but also on those that are absent,
whether purposefully or inadvertently. This is particularly true
where the “total” is conditioned on, because a relative effect will
be established with all components that are absent from the model
(13).

Our simulations show the hazards of failing to consider
the estimand being sought, particularly when adjusting for
total energy intake. In both the isocaloric and equal-mass
models of meat compared with fish, a positive effect was
observed. However, when the comparison was with cereal,
dairy, fish, nuts, and miscellaneous foods, the effect differed
depending on whether the substitution concerned calories or
grams. Unfortunately, simply adjusting for total energy intake
does not guarantee the substitution is isocaloric; the dietary
components must also be measured and analyzed in calories to
ensure the data are compositional. Where different units are used,
the relation between the components and the total is no longer
compositional, resulting in an obscure estimand that may be
extremely misleading. Our “mixed unit” leave-one-out models of
meat and other food components in grams that adjusted for total
energy intake returned ambiguous coefficients with opposite sign
to the appropriate equal-mass estimands and, on 1 occasion, the
appropriate isocaloric estimand. We were unable to establish a
firm pattern or meaning for these estimands and therefore advise
that the coefficients from “mixed unit” leave-one-out models be
treated with caution.

Even where specified appropriately, we have shown that both
the “same unit” leave-one-out and energy partition models are
prone to bias when the substitution involves ≥2 components.
We have previously shown that the standard model for energy
intake adjustment, which adjusts for total energy, does not
robustly estimate the average relative causal effect owing to
“composite variable bias” (14). This occurs because different
components with different effects are combined into a single
“total energy intake” variable that captures an imperfect average
of the individual components. As an extension of the standard
model, the leave-one-out model suffers the same problem with

substitutions involving >1 component, but the energy partition
model also suffers the same issue where composite terms, such
as “remaining energy intake,” are used. Where the model includes
all components, this problem is mitigated because the weighted
average effect can be calculated from each part. However, even
this approach is not guaranteed to produce a perfect weighted
average because all variables, to a greater or lesser extent, are
composites of smaller parts. This explains why none of the
food models returned the same estimate as the derived weighted
average effect; every food contained multiple macronutrient
components with different effects.

Implications and recommendations

Substitution effects include ≥2 variables in the exposure
regime, making it particularly necessary to ensure the estimand is
well-defined. We recommend that all studies seeking substitution
effects should clearly state their target estimand and justify the
adjustment strategy accordingly; directed acyclic graphs can be
particularly useful in this regard (24).

What constitutes a well-defined intervention in experimental
research and public health practice may differ from what
constitutes a well-defined estimand in observational data. In
experimental and interventional contexts, greater focus is typi-
cally given to food groups or portions because these represent
the units of consumption. Food groups or portions may equally
be examined in observational data, but their composite nature
means that the estimated effects may be less consistent than for
macronutrient variables. We encourage researchers to consider
which units are most appropriate for their specific interests and
recognize the trade-offs involved.

Wherever ≥2 components are involved in the substitution,
there is scope for composite variable bias unless the individual
effects are estimated and combined using an all-components
approach. Because the leave-one-out approach is more common
in the literature than the energy partition model (16–20), this
raises concerns about the validity of existing estimates that
involve more complex substitutions.

Imperfect substitution models may nevertheless represent less
of a concern than inadvertent substitution models that arise from
naïve adjustments for total energy intake. Total energy intake
is routinely included in nutrition epidemiology models for a
variety of reasons (8). Unfortunately, if the other model variables
are not carefully selected with a specific estimand in mind, the
model may estimate inadvertent or obscure causal effects. Where
isocaloric substitution effects are desired, all dietary variables
must be measured and analyzed in calorie units, regardless of
whether the leave-one-out or energy partition model is used and
regardless of whether the variables are macronutrients, foods in
grams, or foods in portions. Equal-mass substitutions may also
be estimated using either approach by including mass variables
whether in grams or portions; for the leave-one-out model
this will require adjusting for total food in grams or portions,
respectively.

These findings have clear implications, not just for the
conduct of future research, but for the appraisal and synthesis
of existing studies. Meta-analyses of dietary exposures rarely
separate studies based on their modeling strategy, making their
results difficult to interpret. Where estimates from different
estimands have been combined, the results may be misleading
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or meaningless. Relative causal effects are particularly difficult
to compare or summarize because it is extremely common to
adjust for several components in addition to total energy intake,
creating unique substitution effects (16–20). Studies that have
considered ≥1 food variables in grams while adjusting for total
energy may contribute obscure estimates with opposite signs
to those estimated from appropriate isocaloric or equal-mass
models. We believe this is likely to explain some of the apparent
heterogeneity in effect estimates between studies, and we
recommend that meta-analyses should only pool estimates of the
same estimand.

Limitations and caveats

Our study used simulated data that oversimplify reality.
Although informed by real data, our primary aim was to
demonstrate the methodological topics at hand; the effects
therefore should not be interpreted as true effects. All variables
were simulated as multivariate normal, with no measurement
error or interactions, which does not reflect reality. All variables
were transformed toward observed means (23), but SDs had to
be reduced and some negative and/or biologically implausible
values were simulated.

We did not simulate or examine the influence of measurement
error. Although important, the issues with measurement error are
distinct from those presented in the current article. Similarly,
we did not simulate or examine the influence of confounding.
Although confounding will be ubiquitous in practice, there is no
specific relevance to substitution modeling beyond what we have
shown previously (14). Both the leave-one-out and energy parti-
tion models will be equally robust to confounding provided the
substitution involves only 1 component; but residual confounding
may arise where ≥2 components are unadjusted (14).

Conclusion

The “leave-one-out” and energy partition models perform
equally well when estimating relative effects that involve
substituting a single exposure with a single dietary component.
Where more components are involved, both approaches may
return biased estimates. Regardless of the approach, substitution
models need to be constructed from clearly defined causal effect
estimands. The practice of examining foods measured in grams
or portions while adjusting for total energy intake is likely
to deliver obscure relative effect estimands with unclear inter-
pretations.
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