
Citation:
Vergilio, T and Kor, A-L and Mullier, D (2023) A Unified Vendor-Agnostic Solution for Big Data Stream
Processing in a Multi-Cloud Environment. Applied Sciences, 13 (23). pp. 1-68. ISSN 2076-3417
DOI: https://doi.org/10.3390/app132312635

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/9132/

Document Version:
Article (Published Version)

Creative Commons: Attribution 4.0

c© 2023 by the authors

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/9132/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

Citation: Vergilio, T.; Kor, A.-L.;

Mullier, D. A Unified

Vendor-Agnostic Solution for Big

Data Stream Processing in a

Multi-Cloud Environment. Appl. Sci.

2023, 13, 12635. https://doi.org/

10.3390/app132312635

Academic Editors: Ce Li and

Bei Guan

Received: 16 October 2023

Revised: 13 November 2023

Accepted: 21 November 2023

Published: 23 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Unified Vendor-Agnostic Solution for Big Data Stream
Processing in a Multi-Cloud Environment
Thalita Vergilio * , Ah-Lian Kor and Duncan Mullier

School of Built Environment, Engineering and Computing, Leeds Beckett University, Leeds LS6 3QS, UK;
a.kor@leedsbeckett.ac.uk (A.-L.K.); d.mullier@leedsbeckett.ac.uk (D.M.)
* Correspondence: t.vergilio@leedsbeckett.ac.uk

Abstract: The field of cloud computing has witnessed tremendous progress, with commercial cloud
providers offering powerful distributed infrastructures to small and medium enterprises (SMEs)
through their revolutionary pay-as-you-go model. Simultaneously, the rise of containers has em-
powered virtualisation, providing orchestration technologies for the deployment and management
of large-scale distributed systems across different geolocations and providers. Big data is another
research area which has developed at an extraordinary pace as industries endeavour to discover
innovative and effective ways of processing large volumes of structured, semi-structured, and unstruc-
tured data. This research aims to integrate the latest advances within the fields of cloud computing,
virtualisation, and big data for a systematic approach to stream processing. The novel contributions
of this research are: (1) MC-BDP, a reference architecture for big data stream processing in a con-
tainerised, multi-cloud environment; (2) a case study conducted with the Estates and Sustainability
departments at Leeds Beckett University to evaluate an MC-BDP prototype within the context of
energy efficiency for smart buildings. The study found that MC-BDP is scalable and fault-tolerant
across cloud environments, key attributes for SMEs managing resources under budgetary constraints.
Additionally, our experiments on technology agnosticism and container co-location provide new
insights into resource utilisation, cost implications, and optimal deployment strategies in cloud-based
big data streaming, offering valuable guidelines for practitioners in the field.

Keywords: multi-cloud; big data; containers; reference architecture; stream; vendor lock-in

1. Introduction
1.1. Research Context

The advent of integrated yet pervasive systems such as the Internet of Things (IoT), the
Internet of Everything (IoE), Fog/Edge computing, and Cloud computing has brought big
data to the forefront of technology research. Smartphones, tablets, GPS trackers, sensors,
and video surveillance devices produce vast amounts of data in varying formats in real
time. Consequently, this poses challenges not only in terms of storage, but also in terms
of timely processing and analysis for intelligence. Big data-related challenges are related
to high volume, velocity, veracity, and variety. Historically, systems which focused on
the volume aspect of big data appeared first. Those are known as batch architectures, as
static finite data is stored in files and processed in batches. The most prominent and most
highly utilised of such systems is Hadoop, an open-source distributed processing system
based on the MapReduce algorithm developed by Google [1]. Hadoop is still currently
popular but has evolved to include a complete ecosystem of open-source applications for
batch data processing. However, the main critique of Hadoop and other batch systems is
that they overlook two important aspects of big data: velocity and the fact that the data
source is potentially infinite [2]. Batch systems were not designed to process streaming data
and produce results in real time or close-to-real time. Following the first generation of big
data processing systems, which focused on the processing of batch data, stream systems

Appl. Sci. 2023, 13, 12635. https://doi.org/10.3390/app132312635 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132312635
https://doi.org/10.3390/app132312635
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8341-9629
https://orcid.org/0000-0001-9514-3773
https://doi.org/10.3390/app132312635
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132312635?type=check_update&version=3

Appl. Sci. 2023, 13, 12635 2 of 68

were developed to process a potentially infinite source of data arriving at high velocities in
close-to-real time. The focus of these systems was different; therefore, a new architectural
design and approach to data processing was necessary. The concept of a window was
introduced, which involved breaking up the data streams into manageable finite quanta
for processing. This was facilitated by applying two functions: (1) assign a timestamp to
arriving data; (2) based on the timestamp, assign data to a time window for processing.
Thus, time windows are abstracted groups (with a finite number of records) used for
processing [3]. In order to address late and out-of-order streaming data, watermarks were
introduced to represent the time by which all records for a given window are expected to
have arrived [4]. They are used, in conjunction with a defined tolerance, to signal that a
window is ready for processing.

The Lambda architecture challenged the two main big data paradigms, namely, the
batch and stream models, to propose a model where both technology stacks worked
synergistically. Both batch and stream stacks were to be separately maintained, and data
processing would be independently undertaken, with the results subsequently merged to
obtain a combined view of the data. Although this architecture has been critiqued due
to the need to create and maintain complex processing code in two separate places, thus
incurring additional operational managing costs for two different technology stacks [5],
it is still deployed in real-world applications (e.g., Facebook [6] and Twitter [7]). Though
our proposed reference architecture does not completely address the Lambda architecture
overhead-related problem, it exploits the use of a super-framework to enable the same
processing code to be run on batch or stream infrastructures, thus resolving the code
duplication issue. Additionally, it advocates multi-tenancy so that both batch and stream
frameworks share the same cluster. Currently, there are existing hybrid architectures
where batch-based architectures have been adapted to process streaming data, as well as
vice-versa, where stream-based ones have been adapted to process data from batch files.

Although, currently, a plethora of big data architectures is available, there is a dis-
cernible need for the development of reference architectures, defined in this study as
template architectures for a given domain. A reference architecture is based on best prac-
tices and serves as a guide for the design and implementation of concrete architectures.
Examples of numerous published domain-specific reference architectures for big data
built to address this limitation are: BDWFMSs designed for the domain of data-intensive
scientific workflows [8], ref. [9]’s healthcare-related reference architecture, and ref. [10]’s
national security-related reference architecture. Approaches to develop an SME big data
strategy tend to prioritise simplicity and convenience by focusing on big data as a managed
service, whilst overlooking the ominous risk of vendor lock-in. As an example, ref. [11]
highlighted the complexity of big data implementations as a significant barrier to SME
adoption. They have proposed a big data analytics as a service (BDAaaS) model for the
SME market. A similar cloud consumption model, data as a service (DaaS) [12], envisions
big data cloud analytics as a crucial strategy to give SMEs a competitive advantage in the
market. Both these models, however, are dedicated forms of SaaS which could incur a high
risk of vendor lock-in.

Ref. [13]’s research findings reveal that a significant barrier to the adoption of big
data solutions by British manufacturing SMEs is the high cost of switching solutions.
They suggest that these companies need not only appropriate tools, but also appropriate
guidance when implementing an architecture for big data [13]. Big data challenges and
potential within the SME market have been reviewed [14], while investigation of the
opportunities for innovation created through big data has been conducted [15]. However,
to date, a high-level vendor-agnostic blueprint to cater to these requirements does not
exist. This is an identified gap which our research aims to address, namely, the creation
of a reference architecture for big data stream processing targeted at SMEs and therefore
specifically aimed at maximising economies of scale via commercial clouds [16,17]. For
illustration, a study carried out by [18] using quantitative and qualitative methods on a
target population of over a hundred UK-based companies from different sectors showed

Appl. Sci. 2023, 13, 12635 3 of 68

that 71% of respondents saw the risk of vendor lock-in as a possible deterrent to cloud
migration. Although their research also indicated a general lack of maturity in the sector
and lack of familiarity with the concept of vendor lock-in, it revealed that UK decision-
makers were essentially cautious about trusting a single commercial provider with their
business-critical data [18]. This study’s proposal of a reference architecture for big data
using a multi-cloud setup is therefore motivated by its focus on smaller implementers and
supported by relevant research in the area.

Currently, cloud computing business solutions are being made available to SMEs
on a pay-as-you-go model. The cloud has brought with it economies of scale, making it
more cost-effective for smaller companies to commission technology as services instead of
purchasing hardware and maintaining their in-house IT staff. Such entry cost reduction
has enabled more widespread adoption of computing resources to automate processes,
satisfying significantly increased data processing needs. Undeniably, more data means
greater complexity, but also the potential for more accurate predictions and increased
turnover. The profitability of big data initiatives is corroborated by an independent research
study of 559 companies from various sectors conducted by the Business Application
Research Centre [19]. The findings reveal that the participating companies reported an
average eight percent increase in revenue and ten percent decrease in costs as a result of
their use of big data [19]. However, most of them own in-house-hosted technologies and
are still sceptical about transferring their businesses to the cloud [19]. Given the elevated
cost of big data implementations [20,21], one could speculate that the cloud’s economies of
scale could potentially raise the reported profits.

The following three main service models describe how cloud resources are commis-
sioned: IaaS (infrastructure as a service), PaaS (platform as a service), and SaaS (software
as a service). The more specialised a model is, the greater the economies of scale since the
provider is responsible for commissioning and maintaining more resources at different lev-
els. However, as a service model becomes more specialised, it also becomes less flexible and
reliant on specific, if not proprietary, technology. However, a cloud consumer is understood
to be vendor locked-in if they perceive better contract opportunities elsewhere in the market
but is hindered from breaking an existing agreement with a provider. Vendor lock-in is a
major cause of concern for potential cloud adopters [20,22–24], and its mitigation is one
of the motivating factors for the current research. Recently, significant container-based
virtualisation research has been conducted [25–28]. As containers provide decoupling
between applications and the platforms to which they are deployed, they offer a level of
mitigation against vendor lock-in. Furthermore, containers can be deployed on a PaaS
(instead of IaaS) model because they represent a higher virtualisation level compared to
virtual machines [25,29]. When container and cloud computing technologies are employed
together, they afford greater economies of scale and facilitate greater collaboration amongst
developers. As an example, images representing applications which are developed as
containerised services have been shared in public repositories and libraries [30]. Such
images can be deployed on any platform hosted on any infrastructure (cloud or non-cloud-
based). Finally, the use of container and container orchestration technology also enables
multi-cloud setups, which greatly mitigates the risk of vendor lock-in, giving cloud con-
sumers the ability to compare and combine individual offers from providers to create the
most appropriate and preferred configuration [21,28]. Should changes in prices or service
level agreements render it advantageous to do so, resources may be easily and seamlessly
transferred between providers.

1.2. Aim and Objectives

The aim of this research is to propose a unified vendor-agnostic stream processing so-
lution for big data analytics in a multi-cloud environment. It is supported by the following
research objectives: RO1—examine several existing architectures for big data processing
and systematically evaluate the architectures of three well-known real-world companies
(i.e., Facebook, Twitter, and Netflix) with the purpose of understanding non-functional

Appl. Sci. 2023, 13, 12635 4 of 68

requirements for real-world big data systems. The selection criteria for these companies,
the methodology, and the results of this evaluation are explained in a separate publica-
tion [31]; RO2—based on the findings in RO1, propose a new reference architecture based
on industry’s best practices and focused on vendor lock-in mitigation; RO3—develop a pro-
totype based on a case study to enable the empirical evaluation of the proposed reference
architecture; RO4: identify and implement a set of relevant performance metrics for the
prototype in RO3; and RO5—design and execute distinct sets of experiments to evaluate the
proposed reference architecture in terms of the non-functional requirements implemented.

1.3. Rationale

The risk of vendor lock-in is perceived as one of the greatest obstacles to cloud adop-
tion by companies [18,20,24,32]. Consequently, as this study adopts a cloud consumer’s
perspective, the mitigation of vendor lock-in remains an important motivation throughout
its development. The use of open-source technology is associated with a reduction in
vendor lock-in risk [33] while simultaneously promoting collaboration and reuse amongst
the community [34]. Another way of mitigating vendor lock-in-related risks is by hosting
the cloud infrastructure in multiple clouds. From a business perspective, implementers are
less vulnerable to unilateral changes in price or SLAs by single providers when adopting
a multi-cloud setup. Furthermore, they can achieve more flexibility by combining offers
from different providers, or by changing providers for certain services, but not others, if a
more advantageous offer is made available [35]. Motivated to achieve the greatest level of
flexibility and interoperability of components across clouds while, at the same time, taking
advantage of the clouds’ economies of scale, our study proposes a reference architecture
based on the use of containers on a PaaS model. As containerised applications include
all the environment configuration they need to run and can be deployed to any platform
equipped with a container engine, they are fully portable across clouds, thus greatly reduc-
ing the risk of vendor lock-in and allowing implementers to shift away from the traditional
SaaS model usually recommended for SMEs. This study therefore recommends that big
data processing frameworks and other components of the proposed reference architecture
be deployed as containerised services. From a technical perspective, a strong motivation
of this study is to propose a reference architecture that has a discernible value for SMEs
and is therefore reliable and fault-tolerant, since high availability and business continuity
have been identified as important requirements for these companies [12,36]. Within a
single commercial cloud, fault tolerance for containerised systems can be provided at three
different levels: data centre, zone, and region. These are employed by cloud providers
not only to improve fault tolerance, but also to facilitate managing the cloud infrastruc-
ture in a divide-and-conquer fashion. AWS has introduced the availability zones concept,
which consists of isolated data centres hosted in the same region. Since no two availability
zones share the same data centre, the resilience of the infrastructure is increased, even for
single-region deployments [37]. An infrastructure that spans across multiple availability
zones has been recommended by Netflix following the after-effects of AWS outages in the
past [38]. However, zone failures involving multiple availability zones have occurred in
the past [39]. Likewise, a DNS disruption reported in 2016 affected Azure customers in
all regions, effectively rendering the entire cloud unavailable [40]. Our research aims to
explore the most resilient design for a cloud reference architecture and has thus identified
an infrastructure distributed not only across multiple regions, but also across multiple
clouds as a pattern to aim for. The relationship between different levels of fault tolerance
and the cost and volume of data transfer from a cloud consumer’s perspective is also
investigated in this study.

Finally, as the current study focuses on the utilisation of commercial clouds for the
deployment of containerised distributed applications, another area of research which is
yet to fully mature is that of resource consumption estimation for large-scale containerised
systems. Currently, most cluster orchestration technologies allocate resources based on a
user’s initial request [28,41]. Since users tend to overestimate the resources required by their

Appl. Sci. 2023, 13, 12635 5 of 68

applications, this approach leads to under-utilisation and, in the context of cloud computing,
unnecessary costs [41]. Oversubscription is a possible solution, but a more systematic
approach is called for in the literature [28]. Motivated by this gap in knowledge, the current
study explores the relationship between the windowing function used in big data stream
processing and the resource consumption of the cluster, with the aim of proposing a new
approach to cluster size estimation for the domain of big data stream processing.

1.4. Novel Contribution

The novelty of this study lies in its comprehensive and innovative approach to big
data stream processing for SMEs, organizations, and departments characterised by de-
volved management, tight budgetary constraints, and lack of in-house technical expertise
(SMEODs). Our proposed reference architecture, MC-BDP, specifically addresses these
challenges by:

1. Promoting an infrastructure hosted on commercial clouds leveraging the cost-effective
pay-as-you-go model. This model is particularly beneficial for SMEODs as it allows
for financial flexibility and scalability.

2. Shifting from a traditional SaaS model towards a standardised form of PaaS. This
transition is crucial for SMEODs as it offers a more controlled and customisable
computing environment suitable for specific big data needs.

3. Reducing the risk of vendor lock-in by recommending the use of portable, interopera-
ble, and vendor-agnostic components. This strategy is vital for ensuring flexibility
and independence in a multi-cloud environment.

4. Providing a domain-specific reference architecture that offers guidance and simplifies
the implementation process. This aspect is particularly valuable for SMEODs that
may lack the technical expertise or resources to navigate the complexities of big
data systems.

This research further extends its novelty through a critical evaluation of big data
architectures from leading companies such as Facebook, Twitter, and Netflix. This analysis
aims to extract practical insights and non-functional requirements applicable to real-world
big data systems. Additionally, the study introduces an innovative formula for adjusting
CPU and data transfer requirements in a distributed computing cluster for big data stream-
ing. This formula, based on the windowing function used for data processing, is a novel
contribution that aids in optimizing resource utilization and cost-efficiency in big data
stream processing.

This study’s unique contribution, in essence, is the development, implementation,
and evaluation of the MC-BDP architecture, coupled with insightful analyses and practical
tools for enhancing big data stream processing in SMEODs, making it a pioneering study
in the field.

The remainder of this paper is organised as follows; Section 2 reviews the related
literature, situating the current work in the wider context of research in the fields of
big data, cloud computing, and virtualisation, and discussing related work; Section 3
describes the MC-BDP reference architecture; Section 4 discusses the results of MC-BDP’s
evaluation; and Section 5 considers the impact of our research within its field and presents
recommendations for future work.

2. Related Literature Review

Research in big data has flourished in recent years as the volume, velocity, and variety
of data generated by systems and devices connected to the internet escalates at an unprece-
dented rate. This is apparent in the field of virtualisation, following the popularisation
of Docker containers and the advent of sophisticated orchestration technologies enabling
complex distributed architectures to be managed as a single cluster. Additionally, the
popularisation of cloud computing and its associated pay-as-you-go model triggered a
technological revolution by lowering the entry barrier for small and medium companies
to commission complex and sophisticated systems. At the intersection of such rich and

Appl. Sci. 2023, 13, 12635 6 of 68

exciting research fields, the current research project emerged. Reference architectures can be
understood as an abstraction over concrete architectures aimed at a specific domain, or for a
specific purpose, or both, based on which concrete architectures are derived. It is generally
understood that every concrete system has an architecture [42]. The relationship between
the system and the architecture can thus be abstracted as a one-to-one type, whereas a
reference architecture holds a one-to-many relationship with specific implementations and
concrete architectures. The objective of this study in proposing a reference architecture for
big data stream processing in a multi-cloud environment is to provide a purely abstract
template based on which specific architectures can be derived. MC-BDP is both domain-
specific and purpose-specific, and although contributions were found that addressed one or
even both aspects in the literature, an exact match was not encountered. This section takes
a closer look at recent work directly related to the products of this research, summarised
in Table 1, and demonstrates the significance of this study’s contributions to the wider
scientific community.

Table 1. Summary of related work and comparison with MC-BDP reference architecture.

Contribution Domain
Primary

Quantitative
Evaluation

Data
Processing

Focus
Infrastructure Virtualisation

Level

Primary
Qualitative
Evaluation

[8] Scientific Workflows Y Batch Cloud Hypervisor N
[43] Generic N Batch/Stream Cloud/Bare-Metal Hypervisor N
[44] Large Corporations N Batch Cloud/Bare-Metal N/A * N
[9] Healthcare N Batch/Stream N/A * N/A * N

[45] Generic Y Batch/Stream Cloud Hypervisor N
[46] Generic N Batch N/A * N/A * Y †
[10] National Security Y Batch/Stream Bare-Metal N/A * N
[47] Large Corporations N Batch/Stream Cloud/Bare-Metal Any N
[48] IoT Y Stream Cloud/Bare-Metal N/A * N
[49] Generic N N/A * Cloud Container N
[50] Edge Computing Y Stream Bare-Metal Container N
[51] Security N N/A * Cloud Any N
[52] Generic Y Stream Cloud Any N

MC-BDP SMEOD Y Stream Cloud/Bare-Metal Container Y

* N/A means not applicable or not addressed by the author(s). † Qualitative data was analysed quantitatively.

The overview presented in Table 1 depicts the landscape of existing research in the
domain of big data processing, revealing significant variations in the focus areas, infras-
tructure used, and virtualization levels across different studies. A critical observation
derived from this table is the distinct nature of MC-BDP in its approach to big data stream
processing for SMEODs, particularly in its use of both cloud and bare-metal infrastructures
coupled with container-based virtualisation. This contrasts with most existing works,
which predominantly focus on either cloud or bare-metal environments, and often employ
hypervisor-based virtualisation. Additionally, while some studies address specific domains
such as IoT, healthcare, or national security, MC-BDP is unique in its focus on SMEODs,
a sector which faces unique challenges such as budget constraints and lack of in-house
technical expertise. The qualitative evaluation in MC-BDP further sets it apart, as it pro-
vides an empirical assessment of its practical applicability, something often lacking in other
studies. This gap in the literature, along with the unique combination of domain-specificity,
purpose-specificity, and a balance of cloud and bare-metal approaches in MC-BDP, under-
scores the novelty and significance of this research in addressing the needs of SMEODs in
the realm of big data stream processing.

2.1. Reference Architectures

A reference architecture for big data workflow management systems (BDWFMSs) was
proposed by [8] for processing data-intensive scientific workflows in the cloud. Although

Appl. Sci. 2023, 13, 12635 7 of 68

developed for processing big data using a distributed cloud-based infrastructure, BD-
WFMSs differs fundamentally from MC-BDP. Firstly, they were developed for the domain
of scientific workflows, whereas MC-BDP is targeted at SMEODs entering the realm of big
data stream analytics. Consequently, BDWFMSs do not specifically promote a multi-cloud
environment, nor are they motivated by the desire to mitigate the risk of vendor lock-in.
Virtualisation is provided at virtual machine level for BDWFMSs while MC-BDP uses
container-level virtualisation. Thus, BDWFMSs are more significantly affected by the lack
of standardisation in virtual machine models and specifications offered by each provider
than MC-BDP. When it comes to the experimental evaluation of BDWFMSs, their design
shares some similarities with MC-BDP’s, such as the introduction of a computationally
intensive calculation into some of the processing functions to observe how the system
performs at higher loads. Both the BDWFMS and MC-BDP used real historical data for
their experimental setups: the former looked for patterns in driving data for fifty New
York drivers over the course of an hour for its first case study and analysed astronomical
images for its second case study [8], while the latter calculated the energy efficiency of a
data centre based on energy consumption records collected over the course of a year as
part of its case study. An important difference between the experimental setups utilised to
evaluate both reference architectures was that MC-BDP used a simulator to emit the data in
real-time, whereas the BDWFMS analysed static data in its case studies. This difference can
be explained by MC-BDP’s focus on big data stream processing, whereas the BDWFMS’s
main concern is the processing of batch data.

The big data reference architecture was developed by the National Institute of Stan-
dards and Technology (NIST) [43]. NBDRA is composed of five different roles (system
orchestrator, data provider, big data application provider, big data framework provider,
and data consumer) and two fabrics (security and management), each implemented inde-
pendently based on functional requirements. One significant difference between NBDRA
and MC-BDP is that the former has a wider scope, applying to big data in general, while
the latter applies specifically to the domain of big data streams for the SMEOD market.
As a result, the components or roles and fabrics identified by NBDRA are broader and
more abstract. As an example, the big data application provider role defined by NBDRA
is responsible for processing the data according to domain-specific business logic. In MC-
BDP’s proposal, a different emphasis was given to this role, represented as the processing
code uploaded to the big data framework. One of the main concerns of this study was to
investigate the overhead of running technologically agnostic code capable of processing
both batch and stream data. Given that development time is expensive, particularly in
the context of SMEODs at which MC-BDP is targeted, it was one of the objectives of this
study to measure the impact of technology agnosticism on performance. Finally, the data
provider and data consumer roles defined by NBDRA were not differentiated in MC-BDP’s
proposal. Since MC-BDP was designed for stream processing, it used the conceptual model
of a directed acyclic graphics, which is common in stream architectures [53,54]. Thus, the
output of a process becomes the input of another, and each node in the process is capable
of being both a provider and a consumer of data. The biggest difference between NBDRA
and MC-BDP is perhaps that MC-BDP focuses on commercial clouds to provide the infras-
tructure required for big data processing, whereas NBDRA is neutral in this respect. This
difference is explained by MC-BDP’s focus on implementers whose presence in the big
data arena is facilitated, to a great extent, by cloud computing.

The reference architecture proposed by [44] takes an approach similar to our archi-
tecture, starting with a thorough review of architectures and technologies for big data,
followed by the proposal of a reference architecture and subsequent evaluation. However,
their proposal focused on software only, whereas MC-BDP includes both hardware and
software. In particular, MC-BDP offers an in-depth look at the advantages of leveraging
container-based virtualisation technology to promote vendor lock-in mitigation and facili-
tate ingress into the big data market through cloud computing. Their proposed reference
architecture looked mainly at frameworks for processing batch data. NoSQL databases

Appl. Sci. 2023, 13, 12635 8 of 68

and the Hadoop ecosystem are described as relevant big data technologies. However,
stream-specific components of the Hadoop ecosystem such as Flink, Spark, and Storm are
not listed their research. MC-BDP, on the other hand, focuses on stream processing. Finally,
the evaluation of Maier’s reference architecture was performed by analysing the real-world
big data implementations of Facebook, LinkedIn, and Oracle and retrofitting them to the
reference architecture proposed [44]. While this study did perform a similar investigation
of real-world big data implementations [31], its purpose was not to evaluate the MC-BDP
proposal, but to gather requirements for it. The evaluation of MC-BDP was performed
through a concrete case-study, with both quantitative and qualitative data collected and
thoroughly analysed as part of the rigorous scientific process described in Section 4.

The generic architecture proposed by [9] has a number of elements in common with
MC-BDP, such as its reliance on existing open-source big data frameworks and its focus on
stream data processing for providing real-time intelligence. A fundamental difference is
that, even though its architecture is focused on stream processing and real-time analytics,
it contains a batch layer, implemented as a Hadoop cluster. This makes it an instance
of the Lambda architecture, as opposed to MC-BDP, which is purely concerned with big
data stream processing. Additionally, MC-BDP provides a domain-specific case study
evaluation using a mixed-methods approach to provide not only the quantitative measure-
ments needed to rigorously assess the contribution from a positivist standpoint, but also
a highly valued qualitative appraisal of its impact and potential applications within the
target domain.

A reference architecture for big data in the cloud focused on cost and the pay-as-you-
go model is offered by [45]. This study presents three implementation possibilities for its
reference architecture using stream processing technology offered by major commercial
cloud providers, namely, AWS, Google Cloud, and Azure. While some similarities can be
drawn between this proposal and MC-BDP, such as a focus on big data stream processing
on infrastructure commissioned from commercial cloud providers, there are some funda-
mental differences, such as the preoccupation with vendor lock-in mitigation. Ref. [45]’s
implementation proposals are neither portable nor interoperable with components on
different clouds. They state that there was a requirement for each service proposed to be
compatible with other services within the same provider (e.g., Amazon Kinesis Streams
to provide data to Kinesis applications and Google Cloud Pup/Sub for Google Cloud
Dataflow). There was, however, no requirement for the services selected to be compatible
with services from other clouds, thus reducing the risk of vendor lock-in. Since vendor
lock-in mitigation is one of the motivations of this study, the use of managed services
is avoided.

The reference architecture for big data proposed by [10] is similar to MC-BDP in that
it was designed for a specific domain. While MC-BDP focuses on the domain of big data
streams for implementers looking to take advantage of the economies of scale brought
about by cloud computing, their study’s contribution was developed for the domain of
national security. Technology agnosticism is a main concern of the reference architecture
proposed by the study [10], one which it shares with the current study. The evaluation
of the reference architecture was performed using a simple prototype implementation to
analyse a data flow of Twitter sentiment data using stream processing and merge it with
a news dataflow obtained through the processing of batch data to produce intelligence.
Differently from MC-BDP’s prototype evaluation, [10] was based on a typical Lambda
architecture implementation where stream and batch data were processed separately before
the results were merged. There was no controlled variation in the velocity of data ingress
as performed for the MC-BDP evaluation, since the authors’ objective was to demonstrate
the feasibility of the reference architecture, not measure its performance. Case-specific
implementations of such reference architecture within the domain of national security was
called for as future work to enable a more thorough evaluation of the proposed reference
architecture, similar to what was suggested by participants of the MC-BDP case study
following its prototype evaluation within the domain of smart buildings.

Appl. Sci. 2023, 13, 12635 9 of 68

A security reference architecture (SRA) for big data based on the UML notation was
proposed by [51]. Their contribution builds upon other industry-standard reference ar-
chitectures, particularly the NIST Big Data Interoperability Framework [43], by adding a
security dimension defined using UML diagrams. Although their proposition differs signif-
icantly from MC-BDP, it is included in this review because they highlight the importance of
incorporating security aspects into the early design stages of big data implementation [51].
This is the approach supported by this study and integrated into MC-BDP’s security layer
presented in Section 4.

Ref. [47] derived their reference architecture from studying publications related to four
real-world big data implementations: Facebook, Twitter, Netflix, and LinkedIn. This is a
similar approach to the study conducted early in this research where the Facebook, Twitter,
and Netflix architectures for big data were analysed to gather non-functional requirements
to inform the design of the MC-BDP reference architecture [31]. The use of an inductive
process to arrive at a generalisation common to the observed cases and applicable to future
cases is a known and widely used empirical methodology with its roots in [55]’s philosophy
of science. Within this review, a similar inductive process to derive a reference architecture
from known big data implementations from real-world companies was carried out by [56]
and [44]. One criticism which can be made of this approach is that the systems were not
evaluated in situ, nor were the source code and primary data available to the researchers.
Indeed, it would have been advantageous to conduct a case study with the companies and
to access their data, systems, and participants directly. However, as these are very large
global companies, a case study such as the one proposed was not feasible. The evaluation
of [47]’s reference architecture for big data systems was performed by retrofitting it to the
real-world implementations at Facebook, Twitter, Netflix, and LinkedIn. This approach
provides insufficient validation for the proposed model since it was derived from these
very same architectures by induction, so the generalisation should logically retrofit the
particular observations. The need for further validation through a real-world use case was
acknowledged by the authors as a limitation and is addressed by the current research.

2.2. Architectures, Technology Stacks, and Concrete Implementations

Ref. [48] proposed an architecture for big data streams which shares some common
aspects with MC-BDP, such as a focus on stream processing, reliance on open-source
technologies, and evaluation using real-world data emitted by a purpose-built simulator.
Among the principal differences is their aim to produce an architecture focused on the IoT
domain, while MC-BDP is a reference architecture aimed at the SMEOD market. Their eval-
uation methodology for the proposed architecture is comparable to that used for MC-BDP’s
empirical evaluation. A simulator was used to emit smart parking streaming data in real
time at different velocities, and the acquisition and processing times were independently
measured to understand the overhead introduced by their proposed architecture. The veloc-
ities used varied between one and one hundred messages per second, while in MC-BDP’s
experiments they varied between two and two thousand messages per second, making the
latter a more comprehensive test of the prototype under a heavy load. The focus of the
experiments and the metrics observed were fundamentally different. They were interested
in the speed of data processing while our research monitored performance metrics such as
CPU, memory, and network utilisation to understand the overhead introduced by different
features of the proposed reference architecture such as its multi-cloud proposal, as well
as scalability, fault tolerance, technology agnosticism, the use of windowing to process
streaming data, and container co-location. Ref. [49] proposed a specific technology stack
for the utilisation of commercial cloud computing resources with minimal risk of vendor
lock-in. Although not aimed at big data, their proposal shares some common aspects with
MC-BDP, such as the use of container-level virtualisation, an orchestrator, and promotion of
multi-cloud deployment as mitigation against the risk of vendor lock-in. In order to verify
the viability of their proposed technology stack, a prototype was built whereby a simple
browser game was deployed to three commercial providers as a containerised service. Nev-

Appl. Sci. 2023, 13, 12635 10 of 68

ertheless, plans on how the prototype was going to be evaluated, as well as a full account of
the research’s methodology, were not published. The architecture proposed by [50] for the
domain of edge cloud computing is an example of a Lambda architecture implementation
based on Hadoop for batch processing and Spark for stream processing. Although aimed at
very different domains, their research is relevant to the current study as it corroborates the
empirical methodology followed in MC-BDP’s evaluation. They evaluated the performance
of their containerised architecture based on Docker and swarms by measuring CPU and
memory utilisation at the container and node levels; disregarding disk I/O, since it is not
relevant to stream processing; and monitoring the total processing time. The differences,
however, are more significant. Ref. [50]’s architecture was developed for the domain of
edge computing, where computation is performed by smaller edge devices before being
transferred to the cloud. MC-BDP, on the other hand, was developed for SMEODs and aims
to transfer as much of the computation as possible to the cloud to take advantage of its
economies of scale. Although [50]’s choice of metrics and experimental setup were similar
to MC-BDP’s and provided validation for the decisions taken earlier in this study, their
experimental work differed considerably in terms of the infrastructure, container allocation,
container co-location, velocities, and windowing approach. MC-BDP’s evaluation was
more extensive, making it an important contribution to the field.

A recent contribution by [52] proposed a real-time scheduling algorithm for distributed
big data stream processing in a multi-region cloud infrastructure. Using task duplication,
the algorithm created by the authors schedules parallel tasks across different configured
regions within the same cloud, aiming to maximise resource utilisation while minimising
both costs and the completion time. The purpose of their work is rather different from that
of the current study: while the former’s main preoccupation was with achieving an effi-
cient method of running parallel co-dependent workflows by scheduling (and sometimes
duplicating) their component tasks, our research delegates the scheduling implementation
to the orchestrator and focuses, instead, on the underlying architecture. Nevertheless,
both studies are concerned with big data stream processing in a heterogeneous cloud
environment where price variation is particularly significant to implementers.

3. MC-BDP Reference Architecture
3.1. Methods

A gap was initially identified in the literature, reflecting a shortage of systematic
academic studies where container technology was applied to the domains of big data
processing and cloud computing [21]. Additionally, reference architectures with a focus on
cloud consumers based on models other than SaaS are under-studied. To address this gap,
our research aims to leverage the latest advances in containers and container orchestration
technology for a new PaaS-based multi-cloud reference architecture targeted at big data
stream processing.

As part of the requirements engineering phase, we conducted a critical review of
published work by three major big data corporations: Facebook, Twitter, and Netflix [31,57].
Ten non-functional requirements were identified and discussed in the context of these
companies’ architectures: batch data, stream data, late and out-of-order data, processing
guarantees, integration and extensibility, distribution and scalability, cloud support and
elasticity, fault tolerance, flow control, and flexibility and technology agnosticism. Based on
these requirements and industry’s best practices gathered from real-world implementations,
a new MC-BDP reference architecture for big data stream processing in a multi-cloud envi-
ronment was designed and developed. Subsequently, this architecture was implemented
as a prototype in an energy efficiency case study involving the Estates and Sustainability
departments at Leeds Beckett University. This case study used real data obtained by a
previous data centre energy efficiency study [58] to calculate its PUE (power usage effective-
ness). Since the mechanisms in place to emit consumption data and calculate the PUE have
not evolved since the original study took place, the data collected remained relevant. The
case study targeted by our research has been selected because it has characteristics which

Appl. Sci. 2023, 13, 12635 11 of 68

are appropriate for the testing of our prototype [59]. A needs analysis interview revealed
that the Estates and Sustainability departments at Leeds Beckett University managed data
which had inherent big data characteristics: volume (log files with operational data that
spans several years), velocity (data from meters that is sampled and streamed in real-time),
and variety (device log exports, for example, contain unstructured data, as the format
is specific to each manufacturer). The real-time sampling rate used for the data centre
energy efficiency study was, however, limited by the technology available at the time. For
the purpose of this research, the data granularity has been enhanced to meet the higher
volume and velocity requirements together with MC-BDP’s inherent strategy for dealing
with late data [60]. Due to operational and availability constraints, a simulation exercise
was carried out for the evaluation. Instead of using the real EGX300 server located at
one of Leeds Beckett University’s data centres, a simulator was written to emulate the
behaviour of this server. The simulator used real energy consumption data obtained from
the previous power usage effectiveness study [58] and readings were transmitted at desired
frequencies using an interpolation algorithm. While using a simulator carries lower risks
and is time and resource-efficient, it has the disadvantage of not providing real-time insight
into live data. The main purpose of this case study was to conduct a technical evaluation
of the proposed reference architecture. Three out of the ten non-functional requirements
were selected: scalability, fault tolerance, and technology agnosticism. This selection is
supported by current research in the field, as scalability and fault tolerance have been
identified as key issues in a systematic literature review of big data stream analytics [61].
Correspondingly, a major factor of concern, the vendor lock-in risk, was mitigated through
technology agnosticism. The seven remaining functional requirements were not evaluated
due to the time and scope limitations of this project.

3.2. Experimental Procedure

The experimental procedure common to all simulations is summarised in Figure 1.
It starts with booting all participating machines, which are connected to the internet via
SSH secured by public key authentication. The decision to use a public key instead of
password authentication was informed by security considerations at the design stage of
the prototype, as recommended by the Cloud Computing Adoption Framework (CCAF)
proposed by [62]. Public key authentication is more secure than password authentication
given that, in the event of the server being compromised, password authentication confirms
a valid username/password combination to a potential attacker [63].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 66

Figure 1. Experimental procedure for all simulations.

The next step is to run a command in each machine to register with the swarm man-

ager as a worker. As part of this step, the machine’s IP address is sent to the swarm man-

ager via SSH. Since the Azure machines have static IP addresses, this step must be com-

pleted only once for all experiments. The Google Cloud machines are configured with

ephemeral IP addresses, as static IP addresses are not available for purchase. For this rea-

son, they must be registered with the swarm manager after each reboot.

The Flink container services were launched from the Azure swarm manager virtual

machine via the Docker swarm interface, accessible through the SSH console. The Flink

job manager service used the multi-cloud network created using the Weave plugin and

was constrained to run on a dedicated machine. This constraint was introduced to isolate

the job manager service from the task manager service running on worker nodes, thus

allowing for more granular monitoring and gathering of performance statistics. The image

used to create the job manager service was obtained from the Docker Hub repository and

was minimally modified. The Flink task manager service, distributed across different con-

tainers, also used the network created using the Weave plugin. A constraint was added to

run this service on any machine but the one dedicated to run the job manager service.

Once the task manager service was up and running, it was scaled to the desired level of

parallelism using the Docker swarm interface.

Once the data processing job is running, initial statistics are gathered using the Weave

Cloud service [64]. CPU and memory utilisation metrics are verified to check for discrep-

ancies such as readings which are abnormally high or low. Any reading above 2% or be-

low 0.1% for CPU utilisation was considered abnormal, and the setup process was re-

started with a fresh reboot of the machine where the abnormality was observed. Similarly,

any reading above 600 MB or below 200 MB for memory utilisation was considered ab-

normal and warranted a reboot of the machine and a restart of the setup process.

With the data processing job running and ready to receive data, the energy consump-

tion simulator job is started using the graphical user interface. It runs for five minutes,

transmitting data at the desired frequency. Once the energy consumption simulator fin-

ishes transmitting data, it displays the start and end transmission times. These are noted

and used to set the times that the Azure Log Analytics queries are run ‘from and to’. The

setup is then cleared to prepare it for the next experiment: the PUE processor job is

stopped via the Flink job manager interface, the Flink job manager and task manager ser-

vices are stopped using the Docker swarm interface, the nodes are removed from the

swarm, and the virtual machines are switched off. The final step in the process is to run

the Azure Log Analytics queries using the Azure Portal. The ‘from and to’ times are set to

the start and end transmission times. The queries executed are shown in Figure A1.

For the container co-location experiments, because the number of containers per node

was no longer fixed at one, in order to compare the performance of clusters with different

co-location distributions, the container measurements were aggregated, as per Figure A2,

to generate node-level values. For metrics which constitute a sum (node network receive

bytes and node network send bytes), the aggregation was calculated as the sum of the

container-level measurements. For metrics which constitute an average (average node

CPU utilisation and average node memory utilisation), the aggregation was calculated as

the sum of the average utilisation of each container running on a node. Finally, for metrics

which constitute a maximum, the aggregation of measurements at the container level to

Figure 1. Experimental procedure for all simulations.

The next step is to run a command in each machine to register with the swarm manager
as a worker. As part of this step, the machine’s IP address is sent to the swarm manager via
SSH. Since the Azure machines have static IP addresses, this step must be completed only
once for all experiments. The Google Cloud machines are configured with ephemeral IP
addresses, as static IP addresses are not available for purchase. For this reason, they must
be registered with the swarm manager after each reboot.

The Flink container services were launched from the Azure swarm manager virtual
machine via the Docker swarm interface, accessible through the SSH console. The Flink job
manager service used the multi-cloud network created using the Weave plugin and was
constrained to run on a dedicated machine. This constraint was introduced to isolate the

Appl. Sci. 2023, 13, 12635 12 of 68

job manager service from the task manager service running on worker nodes, thus allowing
for more granular monitoring and gathering of performance statistics. The image used
to create the job manager service was obtained from the Docker Hub repository and was
minimally modified. The Flink task manager service, distributed across different containers,
also used the network created using the Weave plugin. A constraint was added to run this
service on any machine but the one dedicated to run the job manager service. Once the task
manager service was up and running, it was scaled to the desired level of parallelism using
the Docker swarm interface.

Once the data processing job is running, initial statistics are gathered using the Weave
Cloud service [64]. CPU and memory utilisation metrics are verified to check for discrepan-
cies such as readings which are abnormally high or low. Any reading above 2% or below
0.1% for CPU utilisation was considered abnormal, and the setup process was restarted
with a fresh reboot of the machine where the abnormality was observed. Similarly, any
reading above 600 MB or below 200 MB for memory utilisation was considered abnormal
and warranted a reboot of the machine and a restart of the setup process.

With the data processing job running and ready to receive data, the energy consump-
tion simulator job is started using the graphical user interface. It runs for five minutes,
transmitting data at the desired frequency. Once the energy consumption simulator finishes
transmitting data, it displays the start and end transmission times. These are noted and
used to set the times that the Azure Log Analytics queries are run ‘from and to’. The setup
is then cleared to prepare it for the next experiment: the PUE processor job is stopped
via the Flink job manager interface, the Flink job manager and task manager services are
stopped using the Docker swarm interface, the nodes are removed from the swarm, and
the virtual machines are switched off. The final step in the process is to run the Azure Log
Analytics queries using the Azure Portal. The ‘from and to’ times are set to the start and
end transmission times. The queries executed are shown in Figure A1.

For the container co-location experiments, because the number of containers per node
was no longer fixed at one, in order to compare the performance of clusters with different
co-location distributions, the container measurements were aggregated, as per Figure A2,
to generate node-level values. For metrics which constitute a sum (node network receive
bytes and node network send bytes), the aggregation was calculated as the sum of the
container-level measurements. For metrics which constitute an average (average node CPU
utilisation and average node memory utilisation), the aggregation was calculated as the
sum of the average utilisation of each container running on a node. Finally, for metrics
which constitute a maximum, the aggregation of measurements at the container level to
derive metrics at node level (CPU utilisation maximum and memory utilisation maximum)
is inherently more complex.

3.3. MC-BDP Reference Architecture for Big Data Stream Processing

MC-BDP is an evolution of the PaaS-BDP architectural pattern originally proposed
by the authors. While PaaS-BDP introduced a framework-agnostic programming model
for batch and stream processing and enabled different frameworks to share a pool of
resources [65], MC-BDP focuses on stream processing and expands the previous model by
explicitly prescribing a multi-tenant environment where nodes are deployed to multiple
clouds [57]. Therefore, the rationale for proposing a multi-cloud model is to mitigate the
risk of vendor lock-in, perceived as a major obstacle to the adoption of cloud computing.

3.4. MC-BDP Architectural Layers

The MC-BDP reference architecture is depicted in Figure 2. The model comprises
six horizontal and three vertical layers. At the lowest level is the persistence layer, used
in different ways and to varying degrees by components in the node, container, service,
and messaging layers. The next layer represents nodes or machines which can be physical
or virtual. It is followed by the containers layer, which provides an additional layer of
virtualisation, isolation, and abstraction on top of each node. Networking is represented

Appl. Sci. 2023, 13, 12635 13 of 68

next since, in a distributed system used for big data processing, all processing units must
be capable of communicating in order to enable parallel data processing. Networked
containers working as part of a single distributed system must be centrally managed
and coordinated, which is why orchestration is shown as the next layer in the diagram.
Finally, a services layer contains all the application services deployed in the infrastructure
described, including those responsible for processing big data as a stream and those used
for monitoring and analytics. Security, monitoring, and messaging are represented as
vertical layers, as they permeate every other layer in the diagram.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 66

derive metrics at node level (CPU utilisation maximum and memory utilisation maxi-

mum) is inherently more complex.

3.3. MC-BDP Reference Architecture for Big Data Stream Processing

MC-BDP is an evolution of the PaaS-BDP architectural pattern originally proposed

by the authors. While PaaS-BDP introduced a framework-agnostic programming model

for batch and stream processing and enabled different frameworks to share a pool of re-

sources [65], MC-BDP focuses on stream processing and expands the previous model by

explicitly prescribing a multi-tenant environment where nodes are deployed to multiple

clouds [57]. Therefore, the rationale for proposing a multi-cloud model is to mitigate the

risk of vendor lock-in, perceived as a major obstacle to the adoption of cloud computing.

3.4. MC-BDP Architectural Layers

The MC-BDP reference architecture is depicted in Figure 2. The model comprises six

horizontal and three vertical layers. At the lowest level is the persistence layer, used in

different ways and to varying degrees by components in the node, container, service, and

messaging layers. The next layer represents nodes or machines which can be physical or

virtual. It is followed by the containers layer, which provides an additional layer of virtu-

alisation, isolation, and abstraction on top of each node. Networking is represented next

since, in a distributed system used for big data processing, all processing units must be

capable of communicating in order to enable parallel data processing. Networked con-

tainers working as part of a single distributed system must be centrally managed and co-

ordinated, which is why orchestration is shown as the next layer in the diagram. Finally,

a services layer contains all the application services deployed in the infrastructure de-

scribed, including those responsible for processing big data as a stream and those used

for monitoring and analytics. Security, monitoring, and messaging are represented as ver-

tical layers, as they permeate every other layer in the diagram.

Figure 2. MC-BDP architectural layers (source: [57]).

3.4.1. The Persistence Layer

The persistence layer consists of file stores, disk space, and relational and non-rela-

tional databases. In the context of MC-BDP, it is used differently by components in other

layers, namely, the node, container, service, and messaging layers. Depending on how

monitoring is implemented, it can also use some form of persistence although, if a cloud

Figure 2. MC-BDP architectural layers (source: [57]).

3.4.1. The Persistence Layer

The persistence layer consists of file stores, disk space, and relational and non-
relational databases. In the context of MC-BDP, it is used differently by components
in other layers, namely, the node, container, service, and messaging layers. Depending on
how monitoring is implemented, it can also use some form of persistence although, if a
cloud service is used, its representation falls outside the scope of the diagram represented
in Figure 2.

Typically, bare metal nodes hosted on-premises contain a hard disk drive (HDD) which
uses magnetic recording technology to store information [66]. Likewise, virtual machines
commissioned from commercial cloud providers include a configurable amount of disk
space which can be increased or decreased as needed. Although this research focuses
on the stream aspect of big data and therefore on processes which are not disk-intensive
or storage-focused, it is aware that some degree of disk usage does happen at the node
level. Likewise, containers running on physical or virtual machines are configured with an
amount of disk space which can be fixed or flexible up to the maximum amount available
on the host.

Services deployed to containers could be configured to use external storage such as
databases or file stores hosted on bare metal or in the cloud. In MC-BDP’s context of stream
data processing, for instance, external storage is used primarily in checkpointing, a common
approach used by large scale distributed architectures to provide fault tolerance [31]. The
Flink framework, used in the prototype implementation of MC-BDP, recommends that
states be stored in an external file system or database for extra resilience [67]. The cloud
simplifies the provision of these storage resources, which can be commissioned as services
and easily configured to provide an adequate level of resilience. MC-BDP’s messaging
layer also involves an element of persistence, albeit for a short (configurable) amount of

Appl. Sci. 2023, 13, 12635 14 of 68

time. One of the reasons for this requirement is to allow consumers of the data to handle
backpressure. Thus, should data processing slow down, the messaging layer can continue
to receive new data while old data remains stored in the brokers waiting for its consumers
to catch up.

Finally, for general persistence requirements such as the introduction of a sink to
store data after processing, MC-BDP recommends a physical or cloud-based database or
distributed file system such as Hadoop [68] or Aurora [69]. The advantages of using a
cloud-based service are high scalability and fault tolerance, security out-of-the-box, and a
potentially lower initial investment and maintenance cost, since the service is fully managed
by the cloud provider [69–71].

3.4.2. The Node Layer

The node layer on PaaS-BDP, a predecessor of MC-BDP developed in the early stages
of this research, was composed of physical or virtual machines to which containers were
deployed [60]. MC-BDP was developed in an effort to reduce entry barriers for SMEODs to
big data analytics. Taking into account that some of the biggest entry barriers perceived
by such companies are the initial investment required and the risk of vendor lock-in [32],
MC-BDP recommends an infrastructure based on commercial clouds and, where possible,
it recommends that multiple clouds be utilised simultaneously. It is worth noting that
MC-BDP is based on a minimal platform-as-a-service (PaaS) model where virtual machines
with an operating system and a container runtime are provided. Any other dependencies
needed for containerised services to run are specified in their respective container images
and imported from public or private repositories at runtime, thus decoupling these services
from the environment where they run and allowing for a very lightweight PaaS model [60].

One of the advantages of a lightweight PaaS model is that virtual machines have
the potential to be cheaper, since no middleware or runtime technologies other than the
container runtime need to be provided, maintained, or kept up to date. Additionally, there
is a greater chance that different cloud providers’ offerings will be equivalent, since fewer
components are involved, thus enabling consumers to compare them in terms of price,
SLAs, or other non-technical criteria. Since lack of standardisation amongst providers
has been identified as one of the challenges in the field of cloud computing [72], research
developments such as MC-BDP must be careful to account for it in their design. The
proposal of a lightweight PaaS systems thus conforms with the state of current research in
the field.

3.4.3. The Container Layer

The container layer consists of containers running services based on container images.
A container image can be understood as the blueprint of a service. It contains information
about the dependencies needed to build the service such as runtime and middleware,
as well as the addresses from where these can be fetched. Additionally, images contain
instructions on how to build and deploy the service as a container, including the setting of
environment variables and the mapping of ports. Images can be stored in public or private
repositories, from which they can be easily retrieved and shared among developers. Since
images contain all the necessary configuration that a service needs to run, nothing needs to
be installed on the platform other than the container runtime, thus allowing consumers to
compare offerings by different cloud providers more easily and to migrate to a different
provider if needed.

The Open Container Initiative (OCI) was launched by the Linux Foundation with
the purpose of standardising container image formats and container runtime [73]. It has
received widespread support in the community, including large donations of code by
Docker [74], and is therefore proposed as MC-BDP’s containerisation technology com-
pliancy requirement. Due to Docker’s status as a paradigm in the industry today, this
technology is suggested as a good fit for default implementations, since it has a strong
community of adopters as well as an abundance of documentation. It is worth highlighting,

Appl. Sci. 2023, 13, 12635 15 of 68

however, that other container technologies such as Linux Containers (LXC), OpenVZ, and
Linux-VServer exist, and could be used in place of Docker provided that they were sup-
ported by the orchestration technology selected. One clear advantage of using Docker is its
popularity, as reported by Sysdig in their 2019 Container Usage Report [75]. According to
this report, based on over two million real-world containers monitored by their technology,
alternative runtimes such as Mesos or Linux Containers suffered a significant drop in usage
and are nearly non-existent in recent commercial deployments. Docker, on the other hand,
had an adoption of 79%, while a newcomer, CRI-O, amassed an impressive 4% of the
market. The Sysdig report foresees an increase in the popularity of new container tech-
nologies as consequence of the standardisation promoted by the Open Container Initiative
(OCI) [75]. This research is aware of this predicted trend and therefore adopts a flexible
stance with regards to the container technology adopted.

3.4.4. The Networking Layer

The networking layer represents a network which allows containers deployed to differ-
ent nodes at different locations to communicate seamlessly. As MC-BDP is a container-based
reference architecture, it departs from the traditional approach of networking machines
to that of networking containers. Since containers are standalone abstractions decoupled
from the environment where they run, it is a sensible design decision to network at the
container, rather than the node level.

There are different ways in which networking can be implemented at the container
level, and MC-BDP is agnostic in this regard. Some examples are:

• Pipework, a legacy networking tool based on Linux’s cgroups and namespaces [76].
• Flannel, a virtual network that provides a subnet to each host to use with container

runtimes [77].
• Open vSwitch, which creates either an underlay or overlay network to connect con-

tainers running on multiple hosts [78].
• Weave Net, a Docker plugin that creates a virtual network to connect Docker containers

across multiple hosts and enable their automatic discovery [79].

Although some container orchestrators claim to offer out-of-the-box networking [80],
when building a prototype for MC-BDP using Docker swarms, it was observed that only
containers deployed to machines in the same cloud could communicate with each other. In
order to achieve inter-cloud networking, the Weave Net plugin had to be installed [81]. The
Weave Net plugin is built around the concept of an overlay network, defined as an abstract
network built on top of an existing physical network. The plugin deploys a router container
and creates a network bridge on each host. The router uses TCP and UDP connections
to transfer packets to other routers in the network, connected via the network bridges.
Packets destined for containers located within the same host are handled by the kernel
directly without going through the network [82]. In the context of the proposed reference
architecture, this feature is particularly desirable since commercial cloud consumers are
charged for the number of packets transferred over the network. The overlay network
provided by the Weave Net plugin is thus a suitable technology for the implementation
of container-to-container networking in the context of the reference architecture proposed.
Nevertheless, MC-BDP remains agnostic in terms of the technology or approach selected
for network containers hosted in different clouds.

3.4.5. The Orchestration Layer

MC-BDP’s orchestration layer is responsible for launching, stopping, and managing
containers in a cluster. It is therefore in charge of managing services deployed to containers,
registering additional nodes from different clouds (or removing them), scaling the number
of containers that a service runs on, controlling which containers run on which nodes, and
monitoring the overall state of the cluster. A number of technologies exist for providing
container cluster orchestration, the most popular of which is Kubernetes, developed by
Google and later open-sourced to the wider community [83]. As Kubernetes is the most

Appl. Sci. 2023, 13, 12635 16 of 68

established orchestrator technology at present, and Docker swarms are becoming increas-
ingly popular due to their simplicity and ease of installation, most container networking
technologies are compatible with them (Flannel, Open vSwitch, Weave Net).

Ref. [28] conducted a thorough survey of container orchestration systems whereby
ten popular technologies were evaluated and classified according to three main categories
(application model, scheduling, and cluster infrastructure and management), each with a
number of sub-categories. MC-BDP is agnostic in terms of the orchestration technology
used; provided that it is compatible with the container and container networking approach
selected, orchestration could be implemented with any of the technologies reviewed in the
aforementioned study.

3.4.6. The Service Layer

The service layer comprises the applications deployed to the container cluster, which
range from smaller-scale deployments such as front-end user interfaces to larger-scale
frameworks for big data processing distributed across hundreds of containers. MC-BDP
relies on established big data frameworks to undertake the parallel processing of streaming
data. They are responsible for parallelizing the computations, scheduling work between
the processing units, and ensuring fault tolerance at the data processing level. As with
previous components, MC-BDP is agnostic with regards to the big data framework used
for data processing, provided that it can be deployed as a set of containerized services.

The service layer for a container-based reference architecture such as MC-BDP can
be relatively complex, since advances in technology have made it possible to deploy
monitoring and messaging services, as well as databases and file stores, as containerized
services. This challenges the traditional stratified layering approach. Given the advantages
of deploying parts of the architecture as containerised services, namely, greater portability
and interoperability and a reduction in the risk of vendor lock-in, this research recommends
that containers be the preferred deployment strategy of implementers. Thus, instead of
a traditional layered approach containing a very busy services layer with components
represented indistinguishably, this research proposes a service-optimised layer diagram
where vertical swim lanes separate service components by function, as depicted in Figure 2.

3.4.7. The Security Layer

The security layer is orthogonal to all other layers, since it is implemented in multiple
contexts. Encryption, for example, can be configured independently at the framework,
orchestration, networking, messaging, and persistence levels. In the prototype implementa-
tion of MC-BDP, access to cloud-based virtual machines is achieved via SSH connections
authenticated by public keys. Not only is public key authentication the recommended and
most secure authentication method, but cryptographic algorithms are used to secure both
the client and server ends of the connection, and all data transmitted is encrypted [84]. Due
to the complexity inherent to the security aspect of large-scale cloud-based systems, [62]
recommend addressing it through a systematic and comprehensive framework which
is multi-layer and multi-purpose. This research used the Cloud Computing Adoption
Framework (CCAF) proposed by these authors [62] in its prototype implementation of
the MC-BDP reference architecture. However, it remains agnostic with regards to which
security framework is ultimately implemented in specific cases.

3.4.8. The Monitoring Layer

The monitoring layer consists of services aimed at providing metrics related to the
performance of specific components. Since diverse aspects of a system can be, and usually
are, monitored, this layer is also orthogonal to the others, and would likewise benefit
from a systematic approach such as a multi-layer and multi-purpose framework. Separate
advances have been made to provide a monitoring framework for cloud systems [63] and
for big data systems [85]. However, this study believes an integrated approach similar

Appl. Sci. 2023, 13, 12635 17 of 68

to [62]’s CCAF is more suitable to the domain of big data in the cloud, since monitoring
incorporates diverse aspects pertaining to different layers.

As an example, MC-BDP’s prototype implementation utilised, at the application level,
the Flink metrics functionality of the Flink framework [86]. At the orchestration layer,
there were two monitoring perspectives employed: swarm monitoring and Prometheus
monitoring. Swarm monitoring provided a terminal-based interface through which the
state of the cluster could be monitored. Information, such as which nodes were part of the
overlay network and which joined the cluster and which containers were running which
services, was available by running simple command queries [87]. Prometheus monitoring,
implemented as part of a Weave Cloud installation, provided similar information, but
displayed it in a more user-friendly way through a graphical user interface provided by
Weave Cloud [64].

At the networking layer, monitoring for the MC-BDP prototype was provided by the
Weave command line interface, which showed the nodes connected to the overlay network
and their status [81]. At the container level, information such as the status of each container,
the services they were running, and CPU, memory, and network usage were monitored by
three different technologies: Prometheus, Weave Cloud, and Azure Container Monitoring.
Essentially, Weave Cloud provided an easy-to-use and aesthetically pleasing user interface
for Prometheus, on which it is based. Prometheus queries were also run directly to obtain
more fine-grained data. Finally, the Azure Container Monitoring service was used to obtain
and analyse container performance metrics.

At the virtual machine level, Weave Cloud was used in combination with Azure Log
Analytics. At the persistence level, Azure storage analytics was used for monitoring the
Azure database commissioned as a service. Finally, at the messaging level, the Confluence
Control Centre was used to monitor the health of the Kafka server [88].

3.4.9. The Messaging Layer

The messaging layer is used primarily to facilitate the transmission of data from one
system to another. One example of such usage in the context of streaming architectures is
use as a sink or output for real-time data from IOT devices and as a source or input for big
data processing frameworks. Likewise, the messaging layer could be configured as a sink
for the result of the data processing performed by the big data framework and as a source
for subsequent processing by the same or a different framework.

As MC-BDP is a reference architecture for big data stream processing, it is recom-
mended that the messaging technology be distributed and scalable in order to avoid
bottlenecks. It should also be fault-tolerant so that processing can continue with minimal
disruption in the event of a node, container, or even region failure. If savings derived from
economies of scale are to be maximised, it is recommended that the messaging layer be
implemented as a set of containerised services. Finally, in order to facilitate the handling
of backpressure without loss of data by the big data framework, it is advisable that the
messaging technology be capable of a buffering or persisting state for a short (configurable)
amount of time. Technologies such as Google Cloud’s Pub/Sub [89], Amazon Kinesis [90],
or Apache Kafka [91] are suitable choices to fulfil these requirements. The latter was se-
lected for the prototype implementation of MC-BDP since the others are cloud services and
carry an inherent risk of vendor lock-in.

3.5. MC-BDP Prototype Implementation

This section summarises the case study based on which a prototype was created to
evaluate the MC-BDP reference architecture. It also describes the results of MC-BDP’s
quantitative evaluation. A needs analysis exercise conducted at the start of our research
revealed the existence of previous research conducted in 2012 with the Sustainability Centre
at Leeds Beckett University to assess the energy efficiency of a data centre by calculating
its power usage effectiveness (PUE) [58], and our current study leveraged more advanced
technology with an aim of providing close-to-real-time data processing.

Appl. Sci. 2023, 13, 12635 18 of 68

Figure 3 summarises the original PUE calculation process: energy consumption read-
ings from IT equipment and from the rooms in the data centre building were sent to an
EGX300 integrated gateway server. The data was then extracted into Excel reports as an ad
hoc process. Notably, the readings were emitted every 30 min, and the log extraction into
Excel took 43 min to run [58]. Moreover, the reporting was produced retrospectively on a
pull basis. A simulator was developed to emulate the behaviour of the EGX300 integrated
gateway server at the Woodhouse Data Centre at Leeds Beckett University.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 66

sink for the result of the data processing performed by the big data framework and as a

source for subsequent processing by the same or a different framework.

As MC-BDP is a reference architecture for big data stream processing, it is recom-

mended that the messaging technology be distributed and scalable in order to avoid bot-

tlenecks. It should also be fault-tolerant so that processing can continue with minimal dis-

ruption in the event of a node, container, or even region failure. If savings derived from

economies of scale are to be maximised, it is recommended that the messaging layer be

implemented as a set of containerised services. Finally, in order to facilitate the handling

of backpressure without loss of data by the big data framework, it is advisable that the

messaging technology be capable of a buffering or persisting state for a short (configura-

ble) amount of time. Technologies such as Google Cloud’s Pub/Sub [89], Amazon Kinesis

[90], or Apache Kafka [91] are suitable choices to fulfil these requirements. The latter was

selected for the prototype implementation of MC-BDP since the others are cloud services

and carry an inherent risk of vendor lock-in.

3.5. MC-BDP Prototype Implementation

This section summarises the case study based on which a prototype was created to

evaluate the MC-BDP reference architecture. It also describes the results of MC-BDP’s

quantitative evaluation. A needs analysis exercise conducted at the start of our research

revealed the existence of previous research conducted in 2012 with the Sustainability Cen-

tre at Leeds Beckett University to assess the energy efficiency of a data centre by calculat-

ing its power usage effectiveness (PUE) [58], and our current study leveraged more ad-

vanced technology with an aim of providing close-to-real-time data processing.

Figure 3 summarises the original PUE calculation process: energy consumption read-

ings from IT equipment and from the rooms in the data centre building were sent to an

EGX300 integrated gateway server. The data was then extracted into Excel reports as an

ad hoc process. Notably, the readings were emitted every 30 min, and the log extraction

into Excel took 43 min to run [58]. Moreover, the reporting was produced retrospectively

on a pull basis. A simulator was developed to emulate the behaviour of the EGX300 inte-

grated gateway server at the Woodhouse Data Centre at Leeds Beckett University.

Figure 3. Original PUE calculation process at Woodhouse Data Centre.

IT Equipment

Building

EGX300
Integrated Gateway Server

30 min

30 min

43 min

Excel

Figure 3. Original PUE calculation process at Woodhouse Data Centre.

The components involved in the prototype implementation of MC-BDP and their
interfaces are shown in Figure 4. The energy consumption simulator provides a simple
web-based interface through which a user can launch a simulation (e.g., transmit energy
consumption records every 5 s for 10 min). It interfaces with the energy consumption
producer component which receives historical readings from a database hosted in the
Azure cloud, uses the data interpolator to generate realistic readings based on the historical
readings, and emits the results to a Kafka server in the frequency requested. The PUE
processor component is a distributed big data stream processing pipeline which runs on
the Flink framework. It consumes the energy readings from Kafka, calculates the PUE, then
exposes the results which, in the example depicted in the diagram, are posted to an Azure
Event Hub. Different configurations were used in the development, including logging
the results to a file to verify accuracy and posting them back to a different Kafka topic.
Microsoft Power BI integrates easily with the Azure Event Hub and was used to create a
simple dashboard to display the PUE calculations in real time. The formatted PUE results
from the Azure Event Hub were also stored using Azure Blob Storage as proof of concept.
The framework and orchestrator components shown on the bottom right-hand side of the
diagram show how the processing job is launched and the parallelism is set through the
job manager interface. The work is then distributed across several parallel task managers.
The number of job managers and task managers available is controlled by the orchestrator,
since these components run as containerised services, and the interface to scale these up or
down is also exposed.

Appl. Sci. 2023, 13, 12635 19 of 68

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 66

The components involved in the prototype implementation of MC-BDP and their in-

terfaces are shown in Figure 4. The energy consumption simulator provides a simple web-

based interface through which a user can launch a simulation (e.g., transmit energy con-

sumption records every 5 s for 10 min). It interfaces with the energy consumption pro-

ducer component which receives historical readings from a database hosted in the Azure

cloud, uses the data interpolator to generate realistic readings based on the historical read-

ings, and emits the results to a Kafka server in the frequency requested. The PUE processor

component is a distributed big data stream processing pipeline which runs on the Flink

framework. It consumes the energy readings from Kafka, calculates the PUE, then exposes

the results which, in the example depicted in the diagram, are posted to an Azure Event

Hub. Different configurations were used in the development, including logging the results

to a file to verify accuracy and posting them back to a different Kafka topic. Microsoft

Power BI integrates easily with the Azure Event Hub and was used to create a simple

dashboard to display the PUE calculations in real time. The formatted PUE results from

the Azure Event Hub were also stored using Azure Blob Storage as proof of concept. The

framework and orchestrator components shown on the bottom right-hand side of the di-

agram show how the processing job is launched and the parallelism is set through the job

manager interface. The work is then distributed across several parallel task managers. The

number of job managers and task managers available is controlled by the orchestrator,

since these components run as containerised services, and the interface to scale these up

or down is also exposed.

Figure 4. MC-BDP prototype implementation for the data centre energy efficiency case study. Figure 4. MC-BDP prototype implementation for the data centre energy efficiency case study.

The EGX300 integrated gateway server simulator is used to transmit data for the
prototype implementation. The simulator comprises three modules: a data interpolator, a
transmitter to transmit readings at desired frequencies, and a front-end user interface. The
data interpolator component is a simple Maven project with a single class and a single static
method. The static method takes an original consumption record for a given duration as a
parameter and outputs simulated consumption records for a shorter duration contained in
the initial duration. Instead of using a simple average to calculate how much energy was
consumed for smaller durations contained within the original duration, the consumption
values generated vary randomly, up to a maximum variation percentage passed in as
a parameter. The energy consumption producer component was developed to gather
energy consumption records from the original readings database, generate interpolated
records using the data interpolator, and emit generated readings to the Kafka server in
the desired time interval. Finally, the energy consumption simulator is a very simple
out-of-the-box MVC application designed to gather runtime values from the user and
pass them to the energy consumption producer. It captures user input for how many
records to retrieve from the database, the maximum number of records to query per request,
the duration that each original record corresponds to, the desired duration, the desired
variation, and the credentials to access the database. The full implementation code, unit
tests, and commit history for all components are available in public repositories [92–94].
The main technologies used in the prototype implementation of MC-BDP, the alternatives
considered, and the rationale for selection are summarised in Table 2.

Appl. Sci. 2023, 13, 12635 20 of 68

Table 2. Summary of technologies used in MC-BDP prototype implementation.

Technology Purpose Alternatives Considered Rationale

Virtual Machines from
Azure, Google, and OSDC

Run Kafka server,
orchestration, data

processing, and
monitoring containers

Virtual machines from
different providers, private

cloud, bare metal, CaaS

The experiments were designed to
evaluate a multi-cloud setup using
commercial providers. Grants were

received from the providers selected.

Linux Operating System Run containers on a
PaaS model

Windows, macOS,
ChromeOS

Native integration with Docker,
open-source, and free of costs.

Docker Containers
Run the big data
framework’s data

processing containers

Linux Containers (LXC),
OpenVZ, or Linux-VServer

Most popular container technology,
open-source.

Docker Swarms Container orchestration Kubernetes, Mesos

Although Kubernetes is more
feature-rich and more widely used,

Docker swarms are simpler to
configure and native to Docker.

Weave Net Container networking
across clouds

Pipework, Flannel,
Open vSwitch

Simple to install, support for
multi-cloud networking.

Kafka Stream data source. Pub/Sub, Kinesis,
RabbitMQ

Open-source, persistent, scalable,
suitable for high data throughput.

Flink Stream processing Spark, Dataflow

Flink was, at the time of
implementation, the most capable

open-source runner for Apache
Beam [95]. It was also available as a

set of containerised services
for Docker.

In evaluating the MC-BDP reference architecture, it is evident that its assumptions and
design are deeply rooted in the practicalities of current cloud-based data processing. The
model’s reliance on advanced technology for near real-time data processing is particularly
relevant. This approach reflects the ongoing evolution in cloud and big data technologies,
making it a realistic and forward-thinking choice. Furthermore, the use of a simulator to
emulate the behavior of the EGX300 integrated gateway server illustrates a commitment
to accuracy and feasibility in a controlled environment, which is crucial for credible and
replicable research.

The shift towards real-time data processing and reporting, using sophisticated tools
such as Kafka and Azure Event Hub, aligns perfectly with current industry trends. This
not only enhances the model’s applicability in real-world scenarios but also showcases an
understanding of the dynamic nature of data processing in modern times. The integration
of various components, such as a data interpolator and a PUE processor, in the Flink
framework, mirrors the complexity often encountered in the industry, thus adding another
layer of realism to the study.

The scalability aspect of the model, facilitated through cloud integration and the ability
to adjust computational resources, is also a testament to its practicality and relevance. This
aspect is particularly important given the fluctuating demands in big data processing.
In summary, the MC-BDP model has its foundations firmly planted in the realities of
contemporary big data challenges and cloud computing solutions.

4. MC-BDP Prototype Evaluation

The ever-increasing volume, velocity, and variety of big data means that architectures
designed to process it need an infrastructure capable of expanding accordingly. Moreover,
since big data processing is generally performed by distributed nodes, there must be
provisions in place to ensure that the system continues to operate normally should one of
the nodes fail. Both these qualities are most adequately provisioned by cloud computing,

Appl. Sci. 2023, 13, 12635 21 of 68

which offers scalability and fault tolerance at potentially lower costs due to its economies of
scale. However, an innovative approach to utilising commercial clouds from the perspective
of an implementer wishing to mitigate the risk of vendor lock-in is needed, and MC-BDP
was created to fulfil this demand. The experiments in this section measure container CPU
and memory utilisation, as well as network utilisation in clusters of different sizes, to
understand the impact of scaling up or down on resource consumption. Likewise, the
same metrics are used to understand how different configurations of containers deployed
to different clouds may have an impact on resource consumption in a scenario of fault
tolerance, e.g., when one of the nodes becomes unavailable mid-processing.

Being able to write the data processing code once and run it in different platforms and
frameworks has also been identified as a desirable requirement for companies who may not
have the technical expertise in-house to maintain complex bespoke programs. Moreover,
preventing duplication and promoting reuse is an accepted software development principle
which implementers should strive to observe in order to promote efficiency and enhance the
maintainability of the system in the long run [96]. Technology agnosticism is enabled, in this
prototype implementation, by using the Beam framework. The experiments in this section
aim to compare CPU, memory, and network utilisation in clusters running equivalent Beam
and Flink processing code to determine whether one, which is technologically agnostic, has
a significant advantage over the other, which is not.

Finally, an understanding of how different windowing rates and container co-location
configurations affect resource utilisation was needed so implementers could make more
informed business and architectural decisions, particularly in the cloud, where the financial
impact of such decisions is more readily felt. CPU, memory, and network utilisation were
measured in configurations using different windowing rates to determine the effect of the
latter on resource consumption. Likewise, the same metrics were monitored in experiments
using different container co-locations to understand whether co-locating containers in the
same virtual machine (or the same cloud) had a measurable effect on resource consumption.

This section describes the results of the quantitative evaluation of the MC-BDP ref-
erence architecture for big data stream processing in a multi-cloud environment. The
evaluated dimensions are the scalability, fault tolerance, technology agnosticism, window-
ing rate versus resource utilisation, and container co-location. An understanding of the
impact of these dimensions on resource consumption is needed in order to validate the
applicability of MC-BDP to a commercial cloud context where resources are charged on a
pay-as-you-go model. A total of 110 experiments have been conducted for this research.
The details of the experimental design have been tabulated in Tables A2–A4.

4.1. Experimental Results

The experimental results for the evaluation of the MC-BDP reference architecture are
described in this section. Three categories of experiments were run, where each metric
was monitored for different velocities, windowing rates, and cluster sizes. The velocity for
all experiments was measured as two records per time unit and represents the speed of
emission for: (1) total energy consumption of the data centre and (2) energy consumption
by the IT equipment in the data centre. The windowing rate represents the period (how
often a window of processing starts) divided by the duration (how long each window lasts).
For example, the scalability, fault tolerance, and technology agnosticism experiments used a
sliding window of five seconds, starting every second, for data processing. Non-parametric
Mann–Whitney U tests (two independent samples) were employed for hypothesis testing
due to the very small sample sizes [97]. The significance level chosen for all tests was
α = 0.05. The null hypothesis (Ho) was that the means of the two samples were not
significantly different, while the alternative hypothesis, Ha, stated otherwise.

4.1.1. Average Container CPU Utilisation

Based on the summary results for average CPU utilisation presented in Table 3, the
following conclusions were drawn: (i) average container CPU utilisation by velocity for

Appl. Sci. 2023, 13, 12635 22 of 68

scalability—means of three or six workers (single and multi) are not significantly different
from each other. The same conclusion was drawn for all the possible combinations of three
workers (single and multiple) compared to six workers (single and multiple); (ii) average
container CPU utilisation by velocity for fault tolerance—the same conclusions for all
combinations in (i); (iii) average container CPU utilisation by velocity for technology
agnosticism—the means for three or six workers (Beam, Flink) x (single, multiple) were
found not to be significantly different from each other. The same conclusion was drawn
for three workers [(Beam, Flink) and (single, multiple)] x six workers [(Beam, Flink) and
(single, multiple)]. In terms of the number of workers (three, six, ten), the means were also
not significantly different from each other for the average container CPU utilisation by
windowing rate.

Table 3. Experimental results for the evaluation of MC-BDP reference architecture in terms of average
CPU utilisation.

Average CPU
Utilisation

Hypothesis Testing
Results,
Average

Container CPU
Utilisation
By Velocity

Scalability Metrics (for Workers)

Velocity Three Workers (n = 3) Six Workers (n = 6) Mann–Whitney U Test Results

2
records/time Single % Multi % Single % Multi % Three Workers and Three Workers (Single and

Multi)

1 min 3.52 3.44 2.51 3.61 p-value = 0.8857, accept Ho

1 sec 37.94 40.21 18.22 23.17 Three Workers and Six Workers ([S,S] x [M,M])

100 ms 42.25 36.39 25.46 26.24 p-value = 0.1905, accept Ho (S,S)
p-value = 0.2857, accept Ho (S,M)
p-value = 0.1905, accept Ho (M,S)
p-value = 0.2857, accept Ho (M,M)10 ms 41.58 45.46 23.02 29.27

1 ms NA NA 36.26 33.02 Six Workers and Six Workers (Single and Multi)

Average 31.32 31.38 17.30 20.57 p-value = 0.5476, accept Ho

Fault Tolerance Metrics

Velocity Three Workers (n = 3) Six Workers (n = 6) Mann–Whitney U Test Results

2
records/time Single % Multi % Single % Multi % Three Workers and Three Workers (Single

and Multi)

1 min 10.08 3.58 4.97 5.02 p-value = 0.3429, accept Ho

1 sec 7.11 5.92 6.25 8.30 Three Workers and Six Workers ([S,S] x [M,M])

100 ms 11.09 14.83 8.44 7.17 p-value = 0.3429, accept Ho (S,S)
p-value = 0.4857, accept Ho (S,M)
p-value = 0.8857, accept Ho (M,S)
p-value = 0.8857, accept Ho (M,M)10 ms 22.68 8.83 16.55 16.90

1 ms NA NA NA NA Six Workers and Six Workers (Single and Multi)

Average 12.74 8.29 9.05 9.35 p-value = 0.8857, accept Ho

Technology Agnosticism Metrics (for Beam and Flink SDK)

Velocity Three Workers (n = 3) Six Workers (n = 6) Mann–Whitney U Test Results

2
records/time Beam Flink Beam Flink Beam Flink

S% M% S% M% S% M% S% M% Three Workers and Three Workers (Single and
Multi)

1 min 3.4 2.9 3.4 1.9 1.5 2.6 2.1 2.6 p-value = 0.6905, accept
Ho

p-value = 0.4633, accept
Ho

1 sec 33.8 27.9 36.5 34.3 19.7 17.3 20.0 16.6 Three Workers and Six Workers ([S,S] x [M,M])

Appl. Sci. 2023, 13, 12635 23 of 68

Table 3. Cont.

Average CPU
Utilisation

Hypothesis Testing
Results,
Average

Container CPU
Utilisation
By Velocity

100 ms 44.7 36.5 38.5 36.1 23.2 23.2 18.7 20.2 p-value = 0.1425, accept
Ho (S,S)

p-value = 0.1508, accept
Ho (S,M)

p-value = 0.1425, accept
Ho (M,S)

p-value = 0.4206, accept
Ho (M,M)

p-value = 0.09524,
accept Ho (S,S)

p-value = 0.09524,
accept Ho (S,M)

p-value = 0.1508, accept
Ho (M,S)

p-value =0.1508, accept
Ho (M,M)10 ms 46.4 35.9 37.4 36.8 23.2 29.0 18.6 20.8

1 ms 64.8 66.7 35.2 36.5 35.6 37.2 17.7 18.4 Six Workers and Six Workers (Single and Multi)

Average 36.82 33.98 30.20 29.12 20.64 21.86 15.42 15.72 p-value = 0.8325,
accept Ho

p-value = 0.8413,
accept Ho

Average of
Container CPU
Utilisation by

Windowing Rate
(Period/Duration)

Windowing Rate versus Resource Utilisation Metrics

Windowing
Rate

(Period/
Duration)

Three Workers
(n = 3) (%)

Six Workers
(n = 6) (%)

Ten Workers
(n = 10) (%) Mann–Whitney U Test Results

0.1 80 46 29 Three Workers and Six Workers

0.2 39 19 16 p-value = 0.4206, accept Ho

1.0 16 9 6 Three Workers and Ten Workers

1.5 10 6 6 p-value = 0.1719, accept Ho

2.0 8 7 5 Six Workers and Ten Workers

Average 30.60 10.25 12.40 p-value = 0.3976, accept Ho

Average node CPU
utilisation by
node Cluster

Container Co-Location Metrics

Cluster (n = 1) (%) Cluster
(n = 2) (%)

Cluster
(n = 4) (%)

13.39 15.96 14.47

Note: NA means data is not available.

Results (in the form of graphs and regression models) for the average CPU utilisation
by velocity, windowing rate, and cluster are tabulated in Table A5. The velocity is measured
in two records per time, where the time units have been converted to seconds (0.001, 0.01,
0.1, 1.0, 60.0). Due to the inconsistent time interval, a linear trend is not appropriate. Thus,
a more appropriate model would either be an exponential (when the initial decrease is
gradual, followed by a sharp decrease), logarithmic (when the initial decrease is sharp,
followed by a gradual decrease), power, or polynomial regression model. Notably, the type
of regression model was chosen based on the highest R-squared value. Graphical displays
for all the regression models cannot be included in this paper due to space constraints.

4.1.2. Maximum Container CPU Utilisation

Based on the summary results for maximum CPU utilisation presented in Table 4, the
following conclusions were drawn: (i) maximum container CPU utilisation by velocity
for scalability—means of three or six workers (single and multiple) are not significantly
different from each other. The same conclusion was drawn for all the possible combinations
of three workers (single and multiple) compared to six workers (single and multiple);
(ii) maximum container CPU utilisation by velocity for fault tolerance—the same con-
clusions for all combinations in (i); (iii) maximum container CPU utilisation by velocity
for technology agnosticism—all means for three or six workers (Beam, Flink) x (single,
multiple) were compared and found not to be significantly different from each other. The
same conclusion was drawn for three workers [(Beam, Flink) x (single, multiple)] and six
workers [(Beam, Flink) x (single, multiple)]. In terms of the number of workers (three,
six, ten), the means were also not significantly different from each other for the maximum
container CPU utilisation by windowing rate.

Appl. Sci. 2023, 13, 12635 24 of 68

Table 4. Experimental results for the evaluation of MC-BDP reference architecture in terms of
maximum CPU utilisation.

Maximum
Container CPU

Utilisation
By Velocity

Scalability Metrics

Velocity Three Workers (n = 3) Six Workers (n = 6) Mann–Whitney U Test Results

Single % Multi % Single
% Multi % Three Workers and Three Workers (Single

and Multi)

1 min 25 41 39 36 p-value = 0.7715, accept Ho

1 sec 70 70 71 56 Three Workers and Six Workers
([S,S] x [M,M])

100 ms 86 67 84 60 p-value = 0.9048, accept Ho (S,S)
p-value = 1.0952, accept Ho (S,M)
p-value = 1.0952, accept Ho (M,S)
p-value = 0.9048, accept Ho (M,M)10 ms 90 89 64 88

1 ms NA NA 88 92 Six Workers and Six Workers (Single
and Multi)

Average 67.75 66.75 64.50 60.00 p-value = 0.9166, accept Ho

Fault Tolerance Metrics

Velocity Three Workers (n = 3) Six Workers (n = 6) Mann–Whitney U Test Results

Single % Multi % Single
% Multi % Three Workers and Three Workers (Single

and Multi)

1 min 24 7 17 15 p-value = 0.08143, accept Ho

1 sec 17 13 13 28 Three Workers and Six
Workers ([S,S] x [M,M])

100 ms 25 24 22 20 p-value = 0.3836, accept Ho (S,S)
p-value = 0.8857, accept Ho (S,M)
p-value = 0.3836, accept Ho (M,S)
p-value = 0.1143, accept Ho (M,M)10 ms 58 14 47 54

1 ms NA NA NA NA Six Workers and Six Workers (Single
and Multi)

Average 31.00 14.50 24.75 29.25 p-value = 0.6857, accept Ho

Technology Agnosticism Metrics (for Beam and Flink SDK)

Velocity Three Workers (n = 3) Six Workers (n = 6) Mann–Whitney U Test Results

Beam Flink Beam Flink Beam Flink

S% M% S% M% S% M% S% M% Three Workers and Three Workers (Single
and Multi)

1 min 27 27 27 20 27 38 19 18 p-value = 0.8335,
accept Ho

p-value = 0.5476,
accept Ho

1 sec 70 53 44 41 59 44 29 25 Three Workers and Six Workers
([S,S] x [M,M])

100 ms 79 79 62 47 70 49 30 27 p-value = 0.4606,
accept Ho (S,S)

p-value = 0.5476,
accept Ho (S,M)
p-value = 0.7533,
accept Ho (M,S)
p-value = 0.5476,
accept Ho (M,M)

p-value = 0.09369,
accept Ho (S,S)

p-value = 0.04653,
accept Ho (S,M)

p-value = 0.09369,
accept Ho (M,S)

p-value =0.03615,
accept Ho (M,M)10 ms 90 75 54 55 66 71 29 38

1 ms 92 95 50 46 92 91 31 28 Six Workers and Six Workers (Single
and Multi)

Average 71.60 65.80 47.40 41.80 62.80 58.60 27.60 27.20 p-value = 0.8413,
accept Ho

p-value = 0.09524,
accept Ho

Appl. Sci. 2023, 13, 12635 25 of 68

Table 4. Cont.

Maximum
Container CPU
Utilisation by

Windowing Rate
(Period/

Duration)

Windowing Rate versus Resource Utilisation Metrics

Windowing
Rate

(Period/
Duration)

Three Workers
(n = 3) (%)

Six Workers
(n = 6) (%)

Ten Workers
(n = 10) (%)

Mann–Whitney U
Test Results

0.1 93 92 86 Three Workers and
Six Workers

0.2 85 50 72 p-value = 1.0000,
accept Ho

1.0 41 40 44 Three Workers and
Ten Workers

1.5 32 45 42 p-value = 0.6905,
accept Ho

2.0 24 26 40 Six Workers and Ten
Workers

Average 55.00 50.60 56.80 p-value = 0.9166,
accept Ho

Maximum node
CPU utilisation
by node Cluster

Container Co-Location Metrics

Cluster (n = 1) (%) Cluster (n = 2) (%) Cluster (n = 4) (%)

43.00 83.00 64.00

Maximum node
CPU utilisation
by Windowing
Rate and node

Cluster

Windowing
Rate

(Period/
Duration)

Cluster
(n = 1) (%)

Cluster
(n = 2) (%)

Cluster
(n = 4) (%)

Mann–Whitney U
Test Results

0.1 43.00 83.00 63.50 Three Workers and
Six Workers

0.2 26.17 69.00 40.00 p-value = 0.2000,
accept Ho

1.0 11.58 30.00 17.00 Three Workers and
Ten Workers

1.5 11.93 13.00 20.00 p-value = 0.4857,
accept Ho

Average 23.17 48.75 35.13 Six Workers and Ten
Workers

p-value = 0.6857,
accept Ho

Note: NA means data is not available.

Results (in the form of graphs and regression models) for the maximum CPU utilisation
by velocity, windowing rate, and cluster are tabulated in Table A6.

4.1.3. Average Container Memory Utilisation

Based on the summary results for average memory utilisation presented in Table 5,
the following conclusions were drawn: (i) average container memory utilisation by velocity
for scalability—the means of three or six workers (single and multiple) are not significantly
different from each other. The same conclusion was drawn for all the possible combinations
of three workers (single and multiple) x six workers (single and multiple); (ii) average
memory utilisation by velocity for fault tolerance—the same conclusions for all combina-
tions in (i); (iii) average memory utilisation by velocity for technology agnosticism—all
means for three or six workers (Beam, Blink) x (single, multiple) were found not to be
significantly different from each other. The same conclusion was drawn for three workers

Appl. Sci. 2023, 13, 12635 26 of 68

[(Beam, Flink) x (single, multiple)] and six workers [(Beam, Flink) x (single, multiple)]. In
terms of number of workers (three, six, ten), the means were also not significantly different
from each other for the average container memory utilisation by windowing rate.

Table 5. Experimental results for the evaluation of MC-BDP reference architecture in terms of average
memory utilisation.

Average
Container Memory

Utilisation (MB)
By Velocity

Scalability Metrics

Velocity Three Workers (n = 3) Six Workers (n = 6) Mann–Whitney U Test Results

Single Multi Single Multi Three Workers and Three Workers (Single
and Multi)

1 min 824 865 790 812 p-value = 0.2000, accept Ho

1 sec 955 976 933 1015 Three Workers and Six Workers ([S,S] x [M,M])

100 ms 957 995 941 992 p-value = 0.4217, accept Ho (S,S)
p-value = 0.1905, accept Ho (S,M)
p-value = 0.1905, accept Ho (M,S)
p-value = 0.5556, accept Ho (M,M)10 ms 968 1002 942 998

1 ms NA NA 964 1058 Six Workers and Six Workers (Single and Multi)

Average 926.00 959.50 901.50 954.25 p-value = 0.09524, accept Ho

Fault Tolerance Metrics

Velocity Three Workers (n = 3) Six Workers (n = 6) Mann–Whitney U Test Results

Single Multi Single Multi Three Workers and Three Workers (Single
and Multi)

1 min 837 758 882 684 p-value = 0.6857, accept Ho

1 sec 839 842 717 758 Three Workers and Six Workers ([S,S] x [M,M])

100 ms 833 829 879 776 p-value = 0.2000, accept Ho (S,S)
p-value = 0.05714, accept Ho (S,M)
p-value = 0.3429, accept Ho (M,S)
p-value =0.0294, accept Ho (M,M)10 ms 699 849 897 904

1 ms NA NA NA NA Six Workers and Six Workers (Single and Multi)

Average 802.00 819.50 843.75 780.50 p-value = 0.5614, accept Ho

Technology Agnosticism Metrics (Azure)

Velocity Three Workers (n = 3) Six Workers (n = 6) Mann–Whitney U Test Results

Beam Flink Beam Flink Beam Flink

S M S M S M S M Three Workers and Three Workers (Single
and Multi)

1 min 869 861 914 911 783 764 880 876 p-value = 1.0000,
accept Ho

p-value = 1.0000,
accept Ho

1 sec 965 971 894 927 941 949 929 903 Three Workers and Six Workers ([S,S] x [M,M])

100 ms 957 978 926 909 931 913 926 912 p-value = 0.09524,
accept Ho (S,S)

p-value = 0.09524,
accept Ho (S,M)

p-value = 0.09524,
accept Ho (M,S)

p-value = 0.1508, accept
Ho (M,M)

p-value = 0.8335, accept
Ho (S,S)

p-value = 0.4206, accept
Ho (S,M)

p-value = 0.9163, accept
Ho (M,S)

p-value = 0.402, accept
Ho (M,M)10 ms 959 955 886 910 948 899 914 891

1 ms 1000 987 924 911 946 956 909 916 Six Workers and Six Workers (Single and Multi)

Average 950.0 950.4 908.8 913.6 909.8 896.2 911.6 899.6 p-value = 1.0000,
accept Ho

p-value = 0.3095,
accept Ho

Appl. Sci. 2023, 13, 12635 27 of 68

Table 5. Cont.

Average Container
Memory

Utilisation by
Windowing Rate

(Period/Duration)

Windowing Rate versus Resource Utilisation Metrics

Windowing Rate
(Period/Duration)

Three Workers
(n = 3) (MB)

Six Workers
(n = 6) (MB)

Ten Workers
(n = 10) (MB)

Mann–Whitney U
Test Results

0.1 1008 986 980 Three Workers and
Six Workers

0.2 974 1002 988 p-value = 0.5476,
accept Ho

1.0 947 962 903 Three Workers and
Ten Workers

1.5 968 943 892 p-value = 0.4206,
accept Ho

2.0 972 910 815 Six Workers and
Ten Workers

Average 973.8 960.6 915.6 p-value = 0.3095,
accept Ho

Average memory
utilisation by node

Cluster

Container Co-Location Metrics

Cluster (n = 1)
(MB) Cluster (n = 2) (MB) Cluster (n = 4) (MB)

39301 39727 41799

Note: NA means data is not available.

Results (in the form of graphs and regression models) for the average memory utilisa-
tion by velocity, windowing rate, and cluster are tabulated in Table A7.

4.1.4. Maximum Container Memory Utilisation

Based on the summary results for maximum memory utilisation presented in Table 6,
the following conclusions were drawn: (i) maximum container memory utilisation by veloc-
ity for scalability—means of three or six workers (single and multiple) were not significantly
different from each other. The same conclusion was drawn for all the possible combinations
of three workers (single and multiple) x six workers (single and multiple); (ii) maximum
container memory utilisation by velocity for fault tolerance—the same conclusions for all
combinations in (i); (iii) maximum container memory utilisation by velocity for technology
agnosticism—all means for three or six workers (Beam, Flink) x (single, multiple) are not
significantly different from each other. The same conclusion was drawn for three workers
[(Beam, Flink) x (single, multiple)], and six workers [(Beam, Flink) x (single, multiple)],
except for three workers (Beam, multiple) and six workers (Beam, multiple). Maximum
memory utilisation was therefore slightly higher in multi-cloud clusters than it was in
single-cloud clusters in the Beam SDK setups The reason for this discrepancy has not yet
been established, and it may be related to the use of the Beam SDK and not to the infras-
tructure being single or multiple, since the same was not observed when using the Flink
SDK. It is believed that repeated runs of the experiment over time would provide more
relevant data to better understand the relationship between the cloud provider selected,
the SDK selected, and the maximum memory utilisation metrics gathered. The means of
different numbers of workers (three, six, ten) are not significantly different from each other
for the maximum container memory utilisation by windowing rate.

Appl. Sci. 2023, 13, 12635 28 of 68

Table 6. Experimental results for the evaluation of MC-BDP reference architecture in terms of
maximum memory utilisation.

Maximum
Container
Memory

Utilisation (MB)
By Velocity

Scalability Metrics

Velocity Three Workers (n = 3) Six Workers (n = 6) Mann–Whitney U Test Results

Single Multi Single Multi Three Workers and Three Workers (Single
and Multi)

1 min 947 987 946 934 p-value = 0.02857, accept Ho

1 sec 959 983 939 1015 Three Workers and Six Workers
([S,S] x [M,M])

100 ms 969 1004 947 1025 p-value = 0.4606, accept Ho (S,S)
p-value = 0.1905, accept Ho (S,M)
p-value = 0.06349, accept Ho (M,S)
p-value = 0.2957, accept Ho (M,M)10 ms 977 1022 967 1037

1 ms NA NA 990 1083 Six Workers and Six Workers (Single
and Multi)

Average 963.00 999.00 949.75 1002.75 p-value = 0.1508, accept Ho

Fault Tolerance Metrics

Velocity Three Workers (n = 3) Six Workers (n = 6) Mann–Whitney U Test Results

Single Multi Single Multi Three Workers and Three Workers (Single
and Multi)

1 min 906 831 764 815 p-value = 0.1143, accept Ho

1 sec 897 879 762 847 Three Workers and Six Workers
([S,S] x [M,M])

100 ms 928 911 764 872 p-value = 0.0294, accept Ho (S,S)
p-value = 0.3429, accept Ho (S,M)
p-value = 0.0294, accept Ho (M,S)
p-value = 0.6857, accept Ho (M,M)10 ms 1003 876 825 1021

1 ms NA NA NA NA Six Workers and Six Workers (Single
and Multi)

Average 933.50 874.25 778.75 888.75 p-value = 0.05907, accept Ho

Technology Agnosticism Metrics (Azure)

Velocity Three Workers (n = 3) Six Workers (n = 6) Mann–Whitney U Test Results

Beam Flink Beam Flink Beam Flink

S M S M S M S M Three Workers and Three Workers (Single
and Multi)

1 min 974 1012 934 923 961 953 935 909 p-value = 0.5476,
accept Ho

p-value = 0.7533,
accept Ho

1 sec 1006 1014 909 956 993 968 966 914 Three Workers and Six Workers
([S,S] x [M,M])

100 ms 995 1001 941 939 973 969 961 935 p-value = 0.2222,
accept Ho (S,S)

p-value = 0.05556,
accept Ho (S,M)

p-value = 0.05556,
accept Ho (M,S)

p-value = 0.01587,
reject Ho (M,M)

p-value = 0.3457,
accept Ho (S,S)

p-value = 0.7533,
accept Ho (S,M)
p-value = 0.3457,
accept Ho (M,S)
p-value = 0.7533,
accept Ho (M,M)10 ms 992 982 900 934 1000 973 930 946

1 ms 1079 1064 962 935 991 999 941 944 Six Workers and Six Workers (Single
and Multi)

Average 1009 1014 929 941 983 972 946 929 p-value = 0.3457,
accept Ho

p-value = 0.3457,
accept Ho

Appl. Sci. 2023, 13, 12635 29 of 68

Table 6. Cont.

Maximum
Container
Memory

Utilisation by
Windowing Rate

(Period/
Duration)

Windowing Rate versus Resource Utilisation Metrics

Windowing Rate
(Period/Duration)

Three
Workers

(n = 3) (MB)

Six Workers
(n = 6) (MB)

Ten Workers
(n = 10) (MB)

Mann–Whitney U
Test Results

0.1 10,176 1011 991 Three Workers and
Six Workers

0.2 994 1003 1011 p-value = 0.1412,
accept Ho

1.0 999 1010 1005 Three Workers and
Ten Workers

1.5 986 1003 983 p-value = 0.5476,
accept Ho

2.0 998 1011 952 Six Workers and Ten
Workers

Average 2830 1007 988 p-value = 0.2031,
accept Ho

Maximum node
Memory

utilisation by
Windowing Rate
and node Cluster

Windowing Rate
(Period/Duration)

Cluster
(n = 1) (MB)

Cluster
(n = 2) (MB)

Cluster
(n = 4) (MB)

Mann–Whitney U
Test Results

0.1 1050 2161 4474 Three Workers and
Six Workers

0.2 1085 2186 4517 p-value = 0.01193,
reject Ho

1.0 1043 2174 4475 Three Workers and
Ten Workers

1.5 1039 2171 4475 p-value = 0.01193,
reject Ho

2.0 1078 2161 4441 Six Workers and Ten
Workers

Average 1059 2170 4476 p-value = 0.01167,
reject Ho

Maximum node
Memory

utilisation by
node Cluster

Container Co-Location Metrics

Cluster (n =
1) (MB)

Cluster (n = 2)
(MB) Cluster (n = 4) (MB)

8091 8537 8824

Note: NA means data is not available.

The means for the maximum node memory utilisation by windowing rate and node
cluster sizes (one, two, four) were significantly different from each other, denoting a
clear difference between the three co-locations observed. The nodes with two co-located
containers had a maximum reading roughly twice as high as the nodes with no co-locater
containers. Similarly, the nodes with four co-located containers had a maximum reading
roughly twice as high as the nodes with two co-located containers. This was to be expected,
however, since nodes with no co-located containers were in a cluster of eight, nodes with
two co-located containers were in a cluster of four, and nodes with no co-located containers
were in a cluster of two. In order to compare memory utilisation and co-location, it was
necessary to take the entire cluster into consideration and aggregate the results. The
cluster memory utilisation (maximum) formula, depicted in Figure A2, was utilised in
order to obtain maximum memory utilisation results for the cluster. The last three rows of
Table 6 summarise the maximum memory utilisation findings from the examination of the
entire cluster.

Appl. Sci. 2023, 13, 12635 30 of 68

Results (in the form of graphs and regression models) for the maximum memory
utilisation by velocity, windowing rate, and cluster are tabulated in Table A8.

4.1.5. Container Network Utilisation (GB Sent by Workers)

Based on the summary results presented in Table 7 for total number of GB sent
over the network, the following conclusions were drawn: (i) total number of GB sent
over the network by velocity for scalability—means of three or six workers (single and
multiple) are not significantly different from each other. The same conclusion was drawn
for all the possible combinations of three workers (single and multiple) x six workers
(single and multiple); (ii) total number of GB sent over the network by velocity for fault
tolerance—the same conclusions for all combinations in (i); (iii) total number of GB sent
over the network by velocity for technology agnosticism—all means for three or six workers
(Beam, Flink) x (single, multiple) are not significantly different from each other. The same
conclusion is drawn for three workers [(Beam, Flink) x (single, multiple)] and six workers
[(Beam, Flink) x (single, multiple)]. The means of number of workers (three, six, ten) as well
as the number of containers per node (one, two, four) were also not significantly different
from each other for the total number of GB sent over the network by windowing rate.

Table 7. Network utilisation—total number of gigabytes sent over the network.

Total Number of
GB Sent over the

Network by
Velocity

Scalability Metrics

Velocity Three Workers (n = 3) Six Workers (n = 6) Mann–Whitney U Test Results

Single Multi Single Multi Three Workers and Three Workers (Single
and Multi)

1 min 0.04 0.03 0.06 0.05 p-value = 0.7702, accept Ho

1 sec 0.06 0.04 0.09 0.06 Three Workers and Six
Workers ([S,S] x [M,M])

100 ms 0.06 0.10 0.12 0.10 p-value = 0.3832, accept Ho (S,S)
p-value = 0.3832, accept Ho (S,M)
p-value = 0.5556, accept Ho (M,S)
p-value = 0.3532, accept Ho (M,M)10 ms 0.48 0.47 0.21 0.49

1 ms NA NA 0.36 3.30 Six Workers and Six Workers (Single
and Multi)

Average 0.16 0.16 0.12 0.12 p-value = 0.9166, accept Ho

Fault Tolerance Metrics

Velocity Three Workers (n = 3) Six Workers (n = 6) Mann–Whitney U Test Results

Single Multi Single Multi Three Workers and Three Workers (Single
and Multi)

1 min 0.84 0.34 4.50 0.80 p-value = 0.8845, accept Ho

1 sec 0.76 1.44 2.62 0.95 Three Workers and Six Workers
([S,S] x [M,M])

100 ms 0.84 0.52 1.48 1.10 p-value = 0.0294, accept Ho (S,S)
p-value = 0.1102, accept Ho (S,M)
p-value = 0.02857, accept Ho (M,S)
p-value = 0.2000, accept Ho (M,M)10 ms 0.33 0.63 1.70 1.88

1 ms NA NA NA NA Six Workers and Six Workers (Single
and Multi)

Average 0.69 0.73 2.58 1.18 p-value = 0.1143, accept Ho

Appl. Sci. 2023, 13, 12635 31 of 68

Table 7. Cont.

Total Number of
GB Sent over the

Network by
Velocity

Technology Agnosticism Metrics (for Beam and Flink SDK)

Velocity Three Workers (n = 3) Six Workers (n = 6) Mann–Whitney U Test Results

Beam Flink Beam Flink Beam Flink

S M S M S M S M Three Workers and Three Workers (Single
and Multi)

1 min 0.14 0.02 0.04 0.01 0.07 0.05 0.05 0.03 p-value = 0.2948,
accept Ho

p-value = 0.5219,
accept Ho

1 sec 0.11 0.02 0.04 0.01 0.08 0.06 0.05 0.03 Three Workers and Six Workers
([S,S] x [M,M])

100 ms 0.08 0.06 0.03 0.03 0.14 0.10 0.05 0.04 p-value = 1.0000,
accept Ho (S,S)

p-value = 0.4206,
accept Ho(S,M)

p-value = 0.2948,
accept Ho(M,S)

p-value = 0.7526,
accept Ho(M,M)

p-value = 0.8668,
accept Ho (S,S)

p-value = 0.9131,
accept Ho (S,M)
p-value = 0.1599,
accept Ho (M,S)
p-value = 0.4564,
accept Ho (M,M)10 ms 0.37 0.35 0.04 0.05 0.48 0.27 0.08 0.05

1 ms 3.52 3.25 0.17 0.17 6.26 3.02 0.28 0.24 Six Workers and Six Workers (Single
and Multi)

Average 0.84 0.74 0.06 0.05 1.41 0.70 0.10 0.08 p-value = 0.5476,
accept Ho

p-value = 0.1599,
accept Ho

Total Number of
GB Sent over the

Network by
Windowing Rate

(Period/
Duration)

Windowing Rate versus Resource Utilisation Metrics

Windowing Rate
(Period/Duration)

Three
Workers
(n = 3)

Six Workers
(n = 6)

Ten Workers
(n = 10)

Mann–Whitney U
Test Results

0.1 0.49 0.63 1.02 Three Workers and
Six Workers

0.2 0.34 0.44 0.56 p-value = 0.6004,
accept Ho

1.0 0.13 0.14 0.23 Three Workers and
Ten Workers

1.5 0.09 0.11 0.19 p-value = 0.3095,
accept Ho

2.0 0.10 0.10 0.12 Six Workers and Ten
Workers

Average 0.23 0.28 0.42 p-value = 0.4206,
accept Ho

Total Number of
GB Sent over the

Network by
Number of

Containers per
Node (by

Windowing Rate
and Node
Cluster)

Container Colocation Metrics

Windowing Rate
(Period/Duration)

Cluster
(n = 1) (GB)

Cluster
(n = 2) (GB)

Cluster
(n = 4) (GB)

Mann–Whitney U
Test Results

0.1 0.70 0.80 0.30 Three Workers and
Six Workers

0.2 0.30 0.40 0.30 p-value = 0.7526,
accept Ho

1.0 0.00 0.00 0.00 Three Workers and
Ten Workers

1.5 0.20 0.10 0.10 p-value = 0.3398,
accept Ho

2.0 0.42 0.10 0.11 Six Workers and Ten
Workers

Average 0.32 0.28 0.16 p-value = 0.9153,
accept Ho

Note: NA means data is not available.

Appl. Sci. 2023, 13, 12635 32 of 68

Results (in the form of graphs and regression models) for the number of gigabytes
sent over the network by velocity, windowing rate, and cluster are tabulated in Table A9.

4.1.6. Container Network Utilisation (GB Received by Workers)

Based on the summary results presented in Table 8 for the total number of GB received
over the network, the following conclusions were drawn: (i) total number of GB received
over the network by velocity for scalability—means of three or six workers (single and
multiple) are significantly different from each other for all combinations except for three
workers (single, multiple). The same conclusion is drawn for almost all possible combi-
nations of three workers (single and multiple) x six workers (single and multiple), except
for three workers (single) x six workers (multiple); (ii) total number of GB received over
the network by velocity for fault tolerance –there is no significant difference in the means
for all combinations, except for six workers (single x multiple); (iii) total number of GB
received over the network by velocity for technology agnosticism—all means for three
or six workers (Beam) x (single, multiple) are not significantly different from each other.
There is a significant difference for three workers (Flink) (single x multiple) and (Flink)
[three workers (single) x six workers (single, multiple)], while the rest of the combinations
show no significant difference. The means of different numbers of workers (three, six, ten)
are significantly different from each other, while the number of containers per node (one,
two, four) are not significantly different from each other for the total number of GB received
over the network by windowing rate.

Table 8. Network utilisation (gigabytes received over the network)—graphs and regression models.

Total Number of
GB Received

over the
Network by

Velocity

Scalability Metrics

Velocity Three Workers
(n = 3) Six Workers (n = 6) Mann–Whitney U Test Results

Single Multi Single Multi Three Workers and Three Workers (Single and Multi)

1 min 3.91 3.53 7.94 5.17 p-value = 0.4857, accept Ho

1 sec 4.80 4.17 7.57 5.18 Three Workers and Six Workers ([S,S] x [M,M])

100 ms 3.32 3.58 7.38 4.84 p-value = 0.01587, reject Ho (S,S)
p-value = 0.02684, accept Ho (S,M)
p-value = 0.01587, reject Ho (M,S)
p-value = 0.01587, reject Ho (M,M)10 ms 4.84 3.36 5.72 5.73

1 ms NA NA 9.64 12.49 Six Workers and Six Workers (Single and Multi)

Average 4.22 3.66 7.15 5.98 p-value = 0.2222, reject Ho

Fault Tolerance Metrics

Velocity Three Workers (n =
3) Six Workers (n = 6) Mann–Whitney U Test Results

Single Multi Single Multi Three Workers and Three Workers (Single and Multi)

1 min 1.91 2.02 5.52 5.58 p-value = 0.8857, accept Ho

1 sec 1.66 1.94 6.34 4.71 Three Workers and Six Workers ([S,S] x [M,M])

100 ms 2.95 1.90 4.64 4.75 p-value = 0.02857, accept Ho (S,S)
p-value = 0.02857, accept Ho (S,M)
p-value = 0.02857, accept Ho (M,S)
p-value = 0.02857, accept Ho (M,M)10 ms 1.46 1.62 5.27 5.64

1 ms NA NA NA NA Six Workers and Six Workers (Single and Multi)

Average p-value = 0.2222, reject Ho

Appl. Sci. 2023, 13, 12635 33 of 68

Table 8. Cont.

Total Number of
GB Received

over the
Network by

Velocity

Technology Agnosticism Metrics (for Beam and Flink SDK)

Velocity Three Workers
(n = 3) Six Workers (n = 6) Mann–Whitney U Test Results

Beam Flink Beam Flink Beam Flink

S M S M S M S M Three Workers and Three Workers (Single and Multi)

1 min 4.84 2.28 1.83 1.03 8.75 7.10 4.19 3.45 p-value = 0.09269,
accept Ho p-value = 0.007937, reject Ho

1 sec 4.84 2.28 2.25 1.09 9.16 7.23 4.73 3.27 Three Workers and Six Workers ([S,S] x [M,M])

100 ms 4.61 2.31 2.32 1.16 9.47 6.51 4.57 2.92 p-value = 0.05933,
accept Ho (S,S)

p-value = 0.09369,
accept Ho (S,M)

p-value = 0.03615,
accept Ho (M,S)
p-value = 0.5296,
accept Ho (M,M)

p-value = 0.007937, reject
Ho (S,S)

p-value = 0.01587, reject
Ho (S,M)

p-value = 0.007937, accept
Ho (M,S)

p-value = 0.01587, accept
Ho (M,M)10 ms 5.14 4.19 2.04 1.92 10.06 7.96 4.66 3.79

1 ms 10.03 9.26 3.14 3.07 20.79 16.21 7.76 5.57 Six Workers and Six Workers (Single and Multi)

Average 5.89 4.06 2.32 1.65 11.65 9.00 5.18 3.80 p-value = 0.09524,
accept Ho p-value = 0.09524, accept Ho

Total Number of
GB Received

over the
Network by
Windowing

Rate (Period/
Duration)

Windowing Rate versus Resource Utilisation Metrics

Windowing
Rate (Period/

Duration)

Three
Workers
(n = 3)

Six Workers
(n = 6)

Ten Workers
(n = 10)

Mann–Whitney U
Test Results

0.1 4.46 7.40 13.49 Three Workers and
Six Workers

0.2 4.45 7.81 13.70 p-value = 0.007937,
reject Ho

1.0 4.39 7.57 13.69 Three Workers and
Ten Workers

1.5 4.23 7.56 12.91 p-value = 0.007937,
reject Ho

2.0 4.12 7.42 12.87 Six Workers and
Ten Workers

Average 4.33 7.55 13.33 p-value = 0.007937,
reject Ho

Total Number of
GB Received

over the
Network by
Number of

Containers per
Node (by

Windowing
Rate and Node

Cluster)

Container Co-Location Metrics

Windowing
Rate (Period/

Duration)

Cluster
(n = 1) (GB)

Cluster
(n = 2) (GB)

Cluster
(n = 4) (GB)

Mann–Whitney U
Test Results

0.1 9.88 9.96 8.64 Three Workers and
Six Workers

0.2 8.51 8.90 8.42 p-value = 0.4206,
accept Ho

1.0 9.11 8.97 7.68 Three Workers and
Ten Workers

1.5 9.10 8.70 9.21 p-value = 0.1508,
accept Ho

2.0 9.15 7.91 8.18 Six Workers and
Ten Workers

Average 9.15 8.89 8.43 p-value = 0.3095,
accept Ho

Note: NA means data is not available.

Appl. Sci. 2023, 13, 12635 34 of 68

Increased network utilisation as clusters increased in size was an expected effect, since
more workers means the greater parallelisation of work, which optimises performance
but increases container-to-container communication [53]. This is particularly relevant in
the context of cloud computing, where data transfers are charged on a metered basis. As
expected, co-location did not significantly affect network utilisation, since containers were
configured to use the internet to communicate with each other. This means that, even if
containers were co-located in the same host, they used the internet to communicate with
each other. It is worth noting, however, that there are other orchestration technologies,
such as Kubernetes, which allow a greater degree of resource sharing between contain-
ers deployed to the same node. Kubernetes uses the concept of a pod of group-related
containers running on the same machine, so containers which are part of the same pod
can access each other’s ports and transfer data internally without leaving the host [98]. It
would be interesting to implement an alternative prototype in the future using a different
orchestrator such as Kubernetes in order to gain an understanding of other ways in which
the co-location of containers into the same machine could translate into reduced cloud
network utilisation.

Results (in the form of graphs and regression models) for the number of gigabytes re-
ceived over the network by velocity, windowing rate, and cluster are tabulated in Table A10.

4.1.7. Container Network Utilisation (GB Sent and Received by the Job Manager)

Based on the summary results presented in Table 9 for total number of GB received
and sent over the network by the job manager during the technology agnosticism ex-
periments, the following conclusions were drawn: (i) total number of GB received by
the job manager over the network by velocity for technology agnosticism—all means
for three or six workers (Beam, Flink) x (single, multiple) are not significantly differ-
ent from each other except for six workers (multiple) x six workers (multiple). How-
ever, means are significantly different for all possible combinations [Beam, Flink] [(three
workers (single, multiple) x six workers (single, multiple)], except for [Beam] [(three
workers (multiple) x six workers (multiple)]; (ii) total number of GB sent by the job man-
ager over the network by velocity for technology agnosticism—all means for three or six
workers (Beam, Flink) x (single, multiple) are not significantly different from each other.
However, means are significantly different for all possible combinations [Beam, Flink]
[(three workers (single, multiple) x six workers (single, multiple)]. This corroborates the
premise that the greater the number of workers in the cluster, the greater the parallelisation
of work, which leads to increased communication between containers across the network.

Results (in the form of graphs and regression models) for the number of gigabytes
received and sent by the job manager during the technology agnosticism experiments by
velocity are tabulated in Table A11.

Based on the summary results presented in Table 10 for the total number of GB received
and sent by the job manager over the network during the windowing rate versus resource
utilisation experiments, the following conclusions were drawn: (i) total number of GB
received by the job manager over the network by velocity for windowing rate—all means
for (three, six, ten) workers are significantly different from each other except for six workers
x ten workers; (ii) total number of GB sent by the job manager over the network by velocity
for windowing rate—all means for (three, six, ten) workers are significantly different
from each other. This is consistent with the results observed in previous experiments and
explained by the fact that parallelisation of work is higher in larger clusters, leading to
increased communication between containers across the network. While this model is a
good fit for distributed systems hosted entirely on-premises, it could result in additional
costs when commercial clouds are used.

Appl. Sci. 2023, 13, 12635 35 of 68

Table 9. Network utilisation for technology agnosticism– total number of gigabytes received and sent
by the job manager.

Total Number of
GB Received by
the Job Manager

over the
Network

Technology Agnosticism Metrics (for Beam and Flink SDK)

Velocity Three Workers (n = 3) Six Workers (n = 6) Mann–Whitney U Test Results

Beam Flink Beam Flink Beam Flink

S M S M S M S M Three Workers and Three Workers (Single
and Multi)

1 min 5.87 4.59 2.46 2.25 8.55 10.25 4.60 5.04 p-value = 0.1425,
accept Ho

p-value = 1.0000,
accept Ho

1 sec 4.88 4.65 2.31 2.25 9.42 10.35 5.02 4.38 Three Workers and Six Workers
([S,S] x [M,M])

100 ms 5.14 4.74 2.47 2.51 10.27 11.18 4.99 4.98 p-value = 0.01193,
reject Ho (S,S)

p-value = 0.007937,
reject Ho (S,M)

p-value = 0.001193,
reject Ho (M,S)

p-value = 0.4020,
accept Ho (M,M)

p-value = 0.007937,
reject Ho (S,S)

p-value = 0.01193,
reject Ho (S,M)

p-value = 0.01193,
reject Ho (M,S)

p-value = 0.01167,
reject Ho (M,M)10 ms 5.17 4.71 2.30 2.53 10.27 10.33 5.52 4.98

1 ms 6.98 7.31 3.80 3.38 15.78 15.66 7.68 7.76 Six Workers and Six Workers (Single
and Multi)

Average 5.61 5.20 2.67 2.58 10.86 11.55 5.56 5.43 p-value = 0.01167,
reject Ho

p-value = 0.6572,
accept Ho

Total Number of
GB Sent by the
Job Manager

over the
Network

Technology Agnosticism Metrics (for Beam and Flink SDK)

Velocity Three Workers (n = 3) Six Workers (n = 6) Mann–Whitney U Test Results

Beam Flink Beam Flink Beam Flink

S M S M S M S M Three Workers and Three Workers (Single
and Multi)

1 min 16.13 13.53 6.60 6.52 49.13 58.96 25.92 28.27 p-value = 0.1425,
accept Ho

p-value = 1.0000,
accept Ho

1 sec 13.62 13.56 6.50 6.52 54.26 58.98 28.24 23.59 Three Workers and Six Workers
([S,S] x [M,M])

100 ms 14.83 13.59 7.12 7.13 59.12 63.85 28.29 28.23 p-value = 0.007937,
reject Ho (S,S)

p-value = 0.007937,
reject Ho (S,M)

p-value = 0.01193,
reject Ho (M,S)

p-value = 0.01193,
reject Ho (M,M)

p-value = 0.007937,
reject Ho (S,S)

p-value = 0.007937,
reject Ho (S,M)

p-value = 0.01193,
reject Ho (M,S)

p-value = 0.01193,
reject Ho (M,M)10 ms 14.84 13.59 6.54 7.09 59.11 58.94 30.70 28.24

1 ms 19.77 21.02 10.72 9.52 88.56 88.42 42.57 42.43 Six Workers and Six Workers (Single
and Multi)

Average 15.84 15.06 7.50 7.36 62.04 65.83 31.14 30.15 p-value = 0.8413,
accept Ho

p-value = 0.4633,
accept Ho

Appl. Sci. 2023, 13, 12635 36 of 68

Table 10. Network utilisation for windowing rate versus resource utilisation—total number of
gigabytes received and sent by the job manager over the network.

Total Number of
GB Received by
the Job Manager

over the Network

Windowing Rate versus Resource Utilisation Metrics

Windowing Rate
(Period/Duration)

Three Workers
(n = 3)

Six Workers
(n = 6)

Ten Workers
(n = 10)

Mann–Whitney U
Test Results

0.1 5.21 9.76 8.29 Three Workers and
Six Workers

0.2 4.77 10.51 18.02 p-value = 0.01587,
reject Ho

1.0 2.42 4.89 18.17 Three Workers and
Ten Workers

1.5 4.79 9.73 7.01 p-value = 0.007937,
reject Ho

2.0 4.87 8.94 16.56 Six Workers and
Ten Workers

Average 4.41 8.77 13.61 p-value = 0.4206,
accept Ho

Total Number of
GB Sent by the Job

Manager over
the Network

Windowing Rate versus Resource Utilisation Metrics

Windowing Rate
(Period/Duration)

Three Workers
(n = 3)

Six Workers
(n = 6)

Ten Workers
(n = 10))

Mann–Whitney U
Test Results

0.1 14.90 54.93 76.20 Three Workers and
Six Workers

0.2 13.75 59.49 165.26 p-value = 0.007937,
reject Ho

1.0 6.91 27.45 165.13 Three Workers and
Ten Workers

1.5 13.76 54.94 63.68 p-value = 0.007937,
reject Ho

2.0 13.78 50.35 139.77 Six Workers and
Ten Workers

Average 12.62 49.43 122.01 p-value = 0.07937,
reject Ho

Results (in the form of graphs and regression models) for the number of gigabytes
received and sent by the job manager during the windowing rate versus resource utilisation
experiments by windowing rate are tabulated in Table A12.

Based on the summary results presented in Table 11 for the total number of GB received
and sent by the job manager over the network during the container co-location experiments,
the following conclusions were drawn: (i) total number of GB received by the job manager
over the network by number of containers per node—all means for (one, two, four) clusters
are not significantly different from each other; (ii) total number of GB received by the job
manager over the network by number of containers per node—all means for (one, two,
four) workers are not significantly different from each other, except for (three workers x six
workers). This is an important finding when considered alongside the network utilisation
readings for workers. It establishes that, generally, when a cluster increases in size, the effect
on manager-to-worker communication is minimal. Worker-to-worker communication, on
the other hand, increases significantly since there is greater parallelisation.

Appl. Sci. 2023, 13, 12635 37 of 68

Table 11. Network utilisation for container co-location—total number of gigabytes received and sent
by the job manager over the network.

Total Number of
GB Received by
the Job Manager

over the Network
by Number of

Containers
per Node

Container Co-Location Metrics

Windowing Rate
(Period/Duration)

Cluster
(n = 1)

Cluster
(n = 2)

Cluster
(n = 4)

Mann–Whitney U
Test Results

0.1 1.67 1.36 1.64 Three Workers and
Six Workers

0.2 1.64 1.37 1.51 p-value = 0.02733,
accept Ho

1.0 1.53 1.50 1.36 Three Workers and
Ten Workers

1.5 1.65 1.36 1.64 p-value = 0.05701,
accept Ho

2.0 1.84 1.64 1.50 Six Workers and
Ten Workers

Average 12.62 49.43 122.01 p-value = 0.3337,
accept Ho

Total Number of
GB Sent by the Job
Manager over the

Network by
Number of
Containers
per Node

Container Co-Location Metrics

Windowing Rate
(Period/Duration)

Cluster
(n = 1)

Cluster
(n = 2)

Cluster
(n = 4)

Mann–Whitney U
Test Results

0.1 12.20 10.17 12.21 Three Workers and
Six Workers

0.2 12.22 10.16 11.18 p-value = 0.01167,
reject Ho

1.0 11.20 11.18 10.17 Three Workers and
Ten Workers

1.5 12.20 10.17 12.19 p-value = 0.09269,
accept Ho

2.0 12.28 10.18 10.17 Six Workers and
Ten Workers

Average 1.67 1.45 1.53 p-value = 0.2343,
accept Ho

Results (in the form of graphs and regression models) for the number of gigabytes
received and sent by the job manager during the container co-location experiments by
windowing rate are tabulated in Table A13.

4.1.8. Total Records Processed and Data Loss

Based on the summary results presented in Table 12 for the total number of records
processed during the fault tolerance experiments, the following conclusions were drawn:
(i) total records processed by fault tolerance—all means for (three, six) workers x (single,
multiple) are not significantly different from each other; (ii) data loss by fault tolerance—all
means for (three, six) workers x (single, multiple) are not significantly different from
each other.

Appl. Sci. 2023, 13, 12635 38 of 68

Table 12. Experimental results for records processed and data loss during the evaluation of MC-BDP
reference architecture for fault tolerance.

Total Records
Processed

Fault Tolerance Metrics

Velocity Three Workers (n = 3) Six Workers (n = 6) Mann–Whitney U Test Results

Single Multi Single Multi Three Workers and Three Workers
(Single and Multi)

1 min 50 50 50 50 p-value = 1.0000, accept Ho

1 sec 2987 2998 2990 2986 Three Workers and Six Workers
([S,S] x [M,M])

100 ms 29,478 30,030 29,902 29,876 p-value = 0.7715, accept Ho (S,S)
p-value = 1.0000, accept Ho (S,M)
p-value = 1.0000, accept Ho (M,S)
p-value = 1.0000, accept Ho (M,M)10 ms 295,765 294,179 300,673 297,689

1 ms NA NA NA NA Six Workers and Six Workers
(Single and Multi)

Average 82,070 81,814 83,403 82,650 p-value = 0.7715, accept Ho

Data Loss %

Fault Tolerance Metrics

Velocity Three Workers (n = 3) Six Workers (n = 6) Mann–Whitney U Test Results

Single % Multi % Single % Multi % Three Workers and Three Workers
(Single and Multi)

1 min 0.00 0.00 0.00 0.00 p-value = 0.6573, accept Ho

1 sec 0.44 0.07 0.33 0.47 Three Workers and Six Workers
([S,S] x [M,M])

100 ms 1.77 0.00 0.33 0.42 p-value = 0.1804, accept Ho (S,S)
p-value = 0.5614, accept Ho (S,M)
p-value = 0.877, accept Ho (M,S)

p-value = 0.6573, accept Ho (M,M)10 ms 1.43 1.98 0.00 0.78

1 ms NA NA NA NA Six Workers and Six Workers
(Single and Multi)

Average 0.91 0.51 0.17 0.42 p-value = 0.1804, accept Ho

Note: NA means data is not available.

4.1.9. Data Ingested

Based on the summary results presented in Table 13 for the total data ingested during
the technology agnosticism experiments, the following conclusions were drawn: data inges-
tion by technology agnosticism—means are not significantly different for all combinations
for Beam and Flink [(three workers, six workers) x (single, multiple), (three workers (single,
multiple) x six workers (single, multiple)].

Table 13. Experimental results for data ingestion during the evaluation of MC-BDP reference archi-
tecture for technology agnosticism.

Data
Ingestion
(KB) by
Velocity

Technology Agnosticism Metrics (for Beam and Flink SDK)

Velocity Three Workers (n = 3) Six Workers (n = 6) Mann–Whitney U Test Results

Beam Flink Beam Flink Three Workers and Three Workers
(Single and Multi)

S M S M S M S M p-value = 1.0000,
accept Ho

p-value = 0.9166,
accept Ho

1 min 172 74 55 39 259 205 158 126 Three Workers and Six Workers
([S,S] x [M,M])

Appl. Sci. 2023, 13, 12635 39 of 68

Table 13. Cont.

Data
Ingestion
(KB) by
Velocity

1 sec 2373 2328 98 90 4824 4824 242 230 p-value = 0.6905,
accept Ho (S,S)

p-value = 0.6905,
accept Ho (S,M)
p-value = 0.8413,
accept Ho (M,S)
p-value = 0.8413,
accept Ho (M,M)

p-value = 0.5476,
accept Ho (S,S)

p-value = 0.5476,
accept Ho (S,M)
p-value = 0.5476,
accept Ho (M,S)
p-value = 0.5476,
accept Ho (M,M)

100 ms 21,900 219,300 510 543 44,580 44,580 1086 1074

10 ms 215,700 215700 4680 4680 432,600 432,600 9480 9420

1 ms 2,154,000 2,154,000 46,500 34,500 4,308,000 4,308,000 93,000 93,000 Six Workers and Six Workers (Single
and Multi)

Average 478,829 518,280 10,368 7970 958,052 958,041 20,793 20,770 p-value = 1.000,
accept Ho

p-value = 0.583,
accept Ho

Based on the summary results presented in Table 14 for the data ingested during
the windowing rate versus resource utilisation and container co-location experiments,
the following conclusions were drawn: (i) total KB ingested by windowing rate—means
for all (three, six, ten) workers are not significantly different from each other; (ii) total
number of records ingested by windowing rate—means for all (three, six, ten) workers are
not significantly different from each other; (iii) total KB ingested by windowing rate and
number of containers per node—means for all (one, two, four) clusters are not significantly
different from each other; (iv) total number or records ingested by windowing rate and
number of containers per node—means for all (one, two, four) clusters are not significantly
different from each other.

Table 14. Experimental results for data ingestion during the evaluation of MC-BDP reference archi-
tecture for the windowing rate versus resource utilisation and container co-location.

Total KB Ingested by
Windowing Rate

(Period/Duration)

Windowing Rate versus Resource Utilisation Metrics

Windowing Rate
(Period/Duration)

Three Workers
(n = 3)

Six Workers
(n = 6)

Ten Workers
(n = 10)

Mann–Whitney U
Test Results

0.1 143,700 143,800 144,000 Three Workers and
Six Workers

0.2 71,900 71,990 72,280 p-value = 0.6905,
accept Ho

1.0 14,500 14,650 14,814 Three Workers and
Ten Workers

1.5 9690 9892 10,052 p-value = 0.6905,
accept Ho

2.0 7410 7515 7638 Six Workers and
Ten Workers

Average 49,440 49,569 49,756 p-value = 0.6905,
accept Ho

Appl. Sci. 2023, 13, 12635 40 of 68

Table 14. Cont.

Total Number of
Records Ingested by

Windowing Rate
(Period/Duration)

Windowing Rate versus Resource Utilisation Metrics

Windowing Rate
(Period/Duration)

Three Workers
(n = 3)

Six Workers
(n = 6)

Ten Workers
(n = 10)

Mann–Whitney U
Test Results

0.1 600,000 600,000 600,000 Three Workers and
Six Workers

0.2 300,000 300,000 300,000 p-value = 0.9161,
accept Ho

1.0 60,000 60,000 60,000 Three Workers and
Ten Workers

1.5 39,945 40,106 39,920 p-value = 0.9161,
accept Ho

2.0 30,361 30,197 29,637 Six Workers and
Ten Workers

Average 206,061 206,060 205,911 p-value = 0.9161,
accept Ho

Total KB ingested by
Number of Containers
per Node Windowing

Rate
(Period/Duration)

Container Co-Location Metrics

Windowing Rate
(Period/Duration)

Cluster
(n = 1)

Cluster
(n = 2)

Cluster
(n = 4)

Mann–Whitney U
Test Results

0.1 144,100 144,000 143,900 Three Workers and
Six Workers

0.2 72,150 72,090 72,140 p-value = 0.8413,
accept Ho

1.0 14,746 14,724 14,711 Three Workers and
Ten Workers

1.5 10,044 9935 9998 p-value = 0.8413,
accept Ho

2.0 7548 7569 7593 Six Workers and
Ten Workers

Average 49,717 49,663 49,668 p-value = 1.0000,
accept Ho

Total Number of
Records Ingested by

Number of Containers
per Node by

Windowing Rate
(Period/Duration)

Container Co-Location Metrics

Windowing Rate
(Period/Duration)

Cluster
(n = 1)

Cluster
(n = 2)

Cluster
(n = 4)

Mann–Whitney U
Test Results

0.1 600,000 600,000 600,000 Three Workers and
Six Workers

0.2 300,000 300,000 300,000 p-value = 0.9161,
accept Ho

1.0 60,000 60,000 60,000 Three Workers and
Ten Workers

1.5 39,827 39,869 40,073 p-value = 0.9161,
accept Ho

2.0 28,881 29,898 30,037 Six Workers and
Ten Workers

Average 205,741 205,953 206,022 p-value = 0.9161,
accept Ho

5. Conclusions and Future Work

This study set out to investigate a unified vendor-agnostic solution to big data stream
processing in a multi-cloud environment. As key beneficiaries of commercial cloud com-

Appl. Sci. 2023, 13, 12635 41 of 68

puting, small and medium enterprises, organisations, or departments characterised by
devolved administration, tight budgetary constraints, and a lack of specialised technical
skills in-house (SMEODs) were selected as the target domain for MC-BDP, a new reference
architecture for big data stream processing aimed at maximising the cloud’s economies of
scale while at the same reducing the risk of vendor lock-in.

The majority of developments targeted at facilitating the adoption of big data analytics
through cloud computing have focused on reducing the complexity of implementing and
managing large distributed systems. Consequently, solutions are predominantly SaaS-
based and associated with another major cause of apprehension: the risk of vendor lock-in.
A number of authoritative studies have been conducted on possible ways of mitigating the
risk of vendor lock-in [18,32,49]. However, no solutions were found which minimised the
risk of vendor lock-in while simultaneously allowing implementers to maximise the cloud’s
economies of scale. Although the combination of containers, cloud computing, and big data
streams is not new, the field lacked a domain-specific approach developed from a cloud
consumer’s perspective to enable implementers to ingress into big data stream analytics
using a cloud model less restrictive than SaaS. As a response to the breadth, extensiveness,
and complexity of big data research, recent developments have tended to focus on specific
domains such as the biomedical sciences [9], the IoT [48], edge computing [50], national
security [10], and scientific simulations [8]. The current study is one such effort, developed
to fill the gap for a systematic approach to big data stream processing targeted at a domain
whose main preoccupation is with minimising the risk of vendor lock-in while at the same
time maximising the cloud’s economies of scale.

Motivated by a desire to facilitate the adoption of big data stream analytics, this study
has proposed a new systematic and unified approach to big data streams. The MC-BDP
reference architecture was created to:

1. Leverage the cloud’s economies of scale by promoting an infrastructure hosted on
commercial clouds;

2. Move away from the traditional SaaS approach towards a standardised form of PaaS;
3. Mitigate the risk of vendor lock-in by prescribing the use of portable, interoperable,

and vendor-agnostic components deployed to multiple clouds; and
4. Alleviate concerns around complexity and skill shortages in the domain by providing

a domain-specific reference architecture to guide implementers.

This study challenges the accepted belief according to which the most appropriate
cloud consumption model for SMEs is SaaS [11,12,99–101]. While acknowledging the
concerns around technical complexity and skill shortages which have led previous authors
to recommend the SaaS cloud model to SMEs, particularly within the realm of big data, this
study places equal importance on the perceived risk of vendor lock-in explored extensively
in recent research [18,32,102–104]. The MC-BDP reference architecture, designed specifically
for the SMEOD domain, provides a good level of scaffolding to enable implementers to
navigate the complexities of big data technology and cloud computing without having to
employ a dedicated and highly specialised technical team.

The simplification and systematisation provided by the MC-BDP reference architec-
ture enabled this study to break with tradition [11,12,99–101] and recommend a cloud
consumption model more desirable than SaaS from a vendor lock-in perspective. This
is a significant contribution to the field of big data streams which, up until now, lacked
a systematic and thoroughly researched approach to big data based on a consumption
model other than SaaS. It is not expected that research on specialised SaaS provisions for
SMEs will cease given that concerns around the risk of vendor lock-in are not universally
or evenly shared amongst companies—some could find that this is a risk worth taking
for the benefit of simplicity. Therefore, works such as [45]’s reference architecture for big
data designed from a cost perspective or [56]’s reference architecture based on real-world
big data implementations, discussed in Section 2, remain valid and indeed useful within
the field. What this study has demonstrated, however, is that rather than searching for a
universal architecture for big data to suit all SMEODs, research should be directed towards

Appl. Sci. 2023, 13, 12635 42 of 68

finding approaches which are flexible and abstract enough to account for the immense
variety in requirements and priorities that characterise the domain.

The 110 experiments performed under controlled conditions demonstrated that MC-
BDP’s prototype was satisfactorily scalable and fault-tolerant across clouds, with no con-
siderable difference observed between single and multi-cloud equivalent setups. Container
co-location was also found not to significantly affect performance. In terms of technology
agnosticism, the overhead introduced by the Beam framework in terms of CPU, memory,
and data transfer was considerable. The conclusion reached was that there is indeed a
performance cost to technology agnosticism as implemented in MC-BDP’s prototype due
to its use of a super-framework to provide portability of the code across various stream
and batch technologies. Nevertheless, this may be a price some implementers would be
willing to pay, so studies such as this where the overhead introduced by a super-framework
was rigorously identified and measured are of utmost value to implementers who are able
to take more informed decisions based on case-specific requirements for portability and
interoperability of the data processing code. The relationship between the windowing
function used for stream data processing and resource utilisation was also more thoroughly
understood following MC-BDP’s experimental evaluation. A simple formula represent-
ing the effects of the windowing function selected on CPU and network utilisation was
proposed, It is important to note that, although exiting work can be found in the literature
which links the windowing function to resource utilisation [105], the approach taken is one
which assumes the infrastructure to be static and adjusts the windowing function to keep
resource utilisation within a desirable range. Taking advantage of one of the cloud’s most
advantageous characteristics, its elasticity, the current study recommends a model where
the windowing rate remains constant while the infrastructure commissioned expands and
shrinks to keep performance metrics within a desirable range.

The quantitative findings of this research demonstrated that the proposed reference
architecture is adequately scalable across different clouds. Given the cloud’s pay-as-you-go
model whereby consumers are only charged for the resources they utilise, being able to scale
up or down is particularly important for SMEODs since budgetary constraints demand
that resources be allocated sensibly and waste minimised. Fault tolerance across clouds
was also demonstrated empirically, with no significant overhead observed in multi-cloud
setups when compared to single-cloud ones. The relevance of this requirement to the
domain of SMEs has been identified in the literature as the need for high availability of
their production systems [12]. Since the aim of this study was to investigate big data stream
processing from a vendor-agnostic perspective, being able to use any stream (or even batch)
framework to run the processing code was identified as a desirable quality and integrated
into the reference architecture proposed. The significance of these results to researchers and
implementers is in being able to take more informed architectural decisions, particularly in
the cloud, where the estimated overhead can be translated into projected costs.

Of similar relevance are the findings of a direct relationship between the windowing
rate and resource utilisation in a distributed big data stream system. Since it was demon-
strated that the CPU and network utilisation can be predicted using a simple formula based
on the windowing rate and constants derived from empirical observation, implementers
now have a more accurate way of projecting the cluster size and the cost of data transfers.
It is believed that the aforementioned relationship has a wider application within the field
of big data stream processing using commercial clouds. The container co-location findings
confirm that co-location does not significantly affect the performance of CPU-intensive
big data stream systems. In the context of cloud computing, this corroboration enables
implementers to experiment with a greater number of deployment configurations, from
multiple virtual machines with a few containers running in them to a smaller number of
more powerful machines hosting a greater number of containers. Factors such as the de-
sired level of fault tolerance (container, node, region, or provider) or projected data transfer
costs may play an important part in the decision-making, particularly considering that
container-to-container data transfer costs can be reduced or eliminated through co-location.

Appl. Sci. 2023, 13, 12635 43 of 68

The cost-centric approach to task distribution offered by [106], aimed at minimising data
transfer costs across clouds, is an important development in this direction. Performance
monitoring at the container and node levels, combined with a weighted list of desired SLAs
and the use of a flexible learning algorithm to make predictions, is this study’s answer to
the same question and is elaborated as a proposal for future work.

5.1. Recommendations for Future Research

The success of this research project has left some interesting avenues open for ex-
ploration. The case study conducted with the Estates and Sustainability departments at
Leeds Beckett University concluded with a strong desire by the participants to extend the
investigation by considering an important aspect of big data which had previously been
left outside of scope: its variety. The complexity and multidimensionality of building data
has, in fact, been identified in recent research as one of the biggest challenges to big data
technology adoption within the sector [107]. A new research project aimed at investigating
the appropriateness of the MC-BDP reference architecture for use-cases where the variety
of the data is paramount was created as the case study concluded.

Tasks for future works investigating aspects of MC-BDP include:

• Investigating how MC-BDP handles batch processing. Comparing [108]’s approach
of using a stream engine to process both batches and streams with an alternative
approach based on the Lambda architecture.

• Following a trend observed in [109]’s research on container co-location, observing
how MC-BDP performs with jobs of different characteristics. Memory-intensive,
network-intensive, and disk I/O-intensive jobs could be created and compared to the
CPU-intensive job utilised in the experiments.

• Integrating recent research on scheduling algorithms such as RTSATD, which uses
task duplication to optimise the performance of big data stream processing across
different cloud regions [52], or [110]’s algorithm developed to minimise data transfers
over the network into MC-BDP’s orchestration layer.

• Adding a cost perspective to MC-BDP’s evaluation by integrating fine-grained billing
information obtained from cloud providers. This is in line with [45]’s and [106]’s
research. It is believed that understanding non-functional requirements from a cost
as well as performance perspective would be advantageous to budget-constrained
organisations.

• Extending MC-BDP’s evaluation to include other domain-specific industry case studies.
• Conducting additional case studies with other types of SMEODs to validate the

proposition that MC-BDP is beneficial to them.
• Strengthening the statistical significance of the quantitative results obtained by widen-

ing the scale of the experiments, using more than two commercial cloud providers and
a greater number of virtual machines and containers and extending the experiments
in duration and volume of incoming data.

As other relevant research is added to the fields of big data, cloud computing, and
virtualisation, new hypotheses and unexplored questions shall become apparent, impelling
further investigation and solidifying this study’s position as a mature contribution to
the field.

5.2. Limitations of the Study

As is the case with all empirical investigations, there were limitations to the exper-
iments conducted to evaluate the MC-BDP reference architecture, in light of which the
results obtained must be understood.

5.2.1. Internal Validity

The main limitations to the internal validity of MC-BDP’s experimental evaluation
were the measuring frequency, the checkpointing frequency, and the monitoring metrics
utilised. Usage statistics were gathered from the host and sent to the Azure Monitoring

Appl. Sci. 2023, 13, 12635 44 of 68

service. These measurements were subsequently queried using the Azure Log Analytics
service. A collection sample interval of ten seconds was used. The rationale for keeping this
configuration was that it constituted the greatest granularity available to describe a time
interval of five minutes (thirty readings). At the time the experiments were designed and
conducted, the minimal collection sample interval allowed for Linux performance counters
was ten seconds [111]. It is believed that, should this technical limitation be lifted in the fu-
ture, it will be worth experimenting with higher sample frequencies, provided that they do
not significantly interfere with the performance of the host machine. Alternatively, further
studies could be designed using other monitoring solutions such as Prometheus [112] to
better understand the effect of different data collection strategies and technologies on the
metrics observed.

The checkpointing frequency used by the fault tolerance experiments is another con-
figuration value which was kept constant in the run of the experiments conducted. Check-
pointing was configured to honour ‘exactly-once’ processing guarantees, take one snapshot
every five hundred milliseconds, and to use the internal memory of the machine where the
job manager was running for storage. The timeout for completion of the snapshot operation
was set to one minute. There was no limit to the number of execution retries, but the
retry delay was set to five hundred milliseconds. The rationale for choosing those values
was to achieve as close as possible a result to exactly-once processing while, at the same
time, ensuring that the overhead introduced by taking the snapshots did not significantly
interfere with data processing. This had to be true even for the scenario where a node
was suddenly lost during the highest volumes/velocities of data ingress and processing.
The percentage of data loss was monitored during the fault tolerance experiments. It
was also used to fine-tune the checkpointing configuration in test runs of the experiment.
Once an acceptable level of data loss was achieved (less than 2%), the configuration was
saved and treated as a constant. This study believes that the checkpointing frequency is an
experimental setting which could be explored further. A thorough understanding of the
relationship between checkpointing frequency, resource utilisation, and percentage of data
loss could be particularly useful to architects and implementers of big data stream systems,
as could the inclusion of their associated costs when utilising commercial cloud providers.

In terms of the monitoring metrics utilised, one of the limitations of using the Azure
Container Monitoring Solution is that it only gathers data at the container level. If node
and cluster-level data is needed for further comparisons, either a different solution must be
used or the container level data must be aggregated, leaving it susceptible to approximation
errors. The adjusted queries detailed in Figure A2 were designed with the help of the
Microsoft Log Analytics Team to enable this research to compare the resource utilisation of
containers deployed to virtual machines of different specifications. The solution encoun-
tered, which aggregates the container utilisation measurements by virtual machine using
different functions, has its limitations. The approach is coarse-grained, particularly with
regards to calculating maximum utilisations at the node level by employing a technique
not dissimilar to windowing in order to assimilate out-of-order, late, and missing data.

Suggestions for improvement involve implementing node and cluster-level monitor-
ing using technologies other than the Azure Container Monitoring Solution. Azure, for
instance, offers an extension which provides metrics for any Linux virtual machine [111].
Alternatively, by leveraging open-source monitoring technology such as Prometheus, ser-
vices such as Weave Cloud are capable of offering all three levels of monitoring [64]. It is
important to note, however, that changing the level of monitoring would make it difficult to
focus on the containers performing the data processing to the exclusion of all other resource-
consuming processes running on the machine, including monitoring processes. Since the
co-location of containers is treated as a variable in this set of experiments, the effect that
supplementary processes would have on resource consumption is expected to increase as
the rate of co-location decreases, simply because there are more virtual machines running.

Appl. Sci. 2023, 13, 12635 45 of 68

5.2.2. External Validity

The main limitations to the external validity of MC-BDP’s evaluation were the choice
of technology, the data transfer configuration, and the complexity of cloud pricing models.
The need to limit the experimental part of this research in terms of both time and scope
meant that only one prototype was developed and evaluated. However, since MC-BDP
is modular and technologically agnostic by design, a number of alternative technologies
could have been used instead of the ones selected. Better yet, controlled experiments
comparing the performance of equivalent technology would have given architects and
potential implementers a good understanding of the advantages and disadvantages of
using the different options. Worthwhile substitutions in the prototype implementation
would have been the big data framework, the container technology, the orchestrator, or
even the platform/operating system.

In terms of data transfer configuration, the current experiments were set up with no
resource sharing between containers deployed to the same node, so container co-location
did not translate into reduced network utilisation. This study believes, however, that
improvements could have been made if resources deployed to the same node had been able
to transfer data without using the network. Additionally, it would have been beneficial to
measure the reduction in network resource consumption when the container running the
job manager service is co-located in the same machine as some of the containers running the
task manager service. Although there are disadvantages to this approach, such as increased
coupling between the services, it would have been advantageous to understand exactly
how much could be gained in terms of reduced network consumption. A more complete
picture would indeed be achieved if these savings could be measured not only in terms
of a reduction in the number of gigabytes sent and received over the network, but also in
terms of the cost incurred. Ref. [106]’s optimisation framework aimed at minimising data
transfer costs across clouds is an important step towards a cost-centric approach to task
distribution, as opposed to the traditional computational-centric algorithms.

The final external limitation is related to the complexities of cloud resource pricing.
Since cloud resources are charged on a pay-as-you-go basis, one could argue that estimation
models offering cost predictions are more useful to implementers than those which focus
on initial capital expenditure. However, the great complexity and considerable variety
in pricing models adopted by different cloud providers mean it is difficult to find a cost
prediction model with generic application across providers.

5.2.3. Construct Validity

In terms of construct validity, the main limitations of this study are to do with the cost,
and consequently the scope, of its experiments. Since one of the motivations of this study
was to adopt the perspective of a cloud consumer, the experiments were conducted using
commercial cloud providers and thus relied on generous, although limited, grants awarded
by them. Instead of two commercial providers, a larger number could have been utilised.
Likewise, larger clusters of up to hundreds of nodes could have been configured to generate
a larger spread of performance data and thus provide a more in-depth understanding of
the attributes evaluated.

All the simulations involved in the experiments had a fixed duration of five minutes.
In an ideal scenario, the run of each experiment would have been increased substantially,
ideally by several hours. However, considering that one-hundred and ten experiments were
conducted in total, each involving a large amount of data being streamed and processed,
and bearing in mind that each scenario also involved a number of test runs to ensure that
the desired experimental conditions were being rigorously observed, extending the chosen
duration was not feasible under this study’s grant limitations.

5.3. Conclusions

MC-BDP was evaluated as part of a case study involving the Estates and Sustainability
departments at Leeds Beckett university using a mixed-methods approach which combined

Appl. Sci. 2023, 13, 12635 46 of 68

post-positivist and interpretivist elements. In its post-positivist evaluation, presented in this
paper, MC-BDP was demonstrated to be scalable and fault-tolerant across clouds. Given
the cloud’s pay-as-you-go model, whereby consumers are only charged for the resources
they utilise, being able to scale up or down is particularly important for SMEODs since
budgetary constraints demand that resources be allocated sensibly and waste minimised.
The relevance of fault tolerance to the domain of SMEs has been identified in the literature
as the need for high availability of their production systems [12].

The results of the technology agnosticism experiments revealed that the use of a super-
framework such as Beam to provide portability and interoperability of the data processing
code did have a cost in terms of performance, measured as, on average, 30% more CPU,
3% more RAM, and 105% more network usage. The significance of these results to re-
searchers and implementers is in being able to take more informed architectural decisions,
particularly in the cloud, where the estimated overhead can be translated into projected
costs. This study believes that a concern over costs can be generalised to SMEODs in
general, and that the overhead measurements obtained empirically are therefore of direct
relevance to the field.

Of similar relevance are the findings of a direct relationship between the windowing
rate and resource utilisation in a distributed big data stream system. Since it was demon-
strated that the CPU and network utilisation can be predicted using a simple formula based
on the windowing rate and constants derived from empirical observation, implementers
now have a more accurate way of projecting the cluster size and the cost of data transfers.
It is believed that the relationship derived experimentally is of wider application within
the field of big data stream processing using commercial clouds.

The container co-location findings confirm that co-location does not significantly
affect the performance of CPU-intensive big data stream systems. In the context of cloud
computing, this corroboration enables implementers to experiment with a greater number of
deployment configurations, from multiple virtual machines with a few containers running
in them to a smaller number of more powerful machines hosting a greater number of
containers. Factors such as the desired level of fault tolerance (container, node, region,
or provider) or projected data transfer costs may play an important part in the decision-
making, particularly considering that container-to-container data transfer costs can be
reduced or eliminated through co-location.

The practical implications of the MC-BDP study conducted at Leeds Beckett Univer-
sity are far-reaching, particularly for SMEODs. These enterprises, which often operate
with limited resources, can greatly benefit from the scalability and fault tolerance aspects
demonstrated by MC-BDP. The ability to efficiently scale resources in response to demand,
a crucial feature in cloud environments, aligns well with the budgetary constraints common
to SMEODs. Additionally, the study’s insights into the cost-performance trade-offs inher-
ent in using super-frameworks such as Beam provide these organisations with valuable
guidance for making cost-effective architectural decisions. This is particularly relevant in
the context of cloud computing, where resource utilization directly impacts operational
costs. Moreover, the findings regarding container co-location and its minimal impact on
performance enable more flexible and cost-efficient deployment strategies, which are crucial
for SMEODs striving for high availability and reduced data transfer costs.

From a theoretical perspective, the MC-BDP study offers new insights into cloud
computing and data processing. By establishing a relationship between windowing rates
and resource consumption in stream architectures, the current study enhances our under-
standing of resource allocation and cost forecasting, particularly in cloud environments.
Additionally, the exploration of container co-location in CPU-intensive settings reveals a
minimal performance impact, broadening our theoretical knowledge in distributed big
data stream processing. These insights not only aid SMEODs but also enrich the broader
field of cloud computing, laying groundwork for future research and innovation.

Appl. Sci. 2023, 13, 12635 47 of 68

Author Contributions: T.V. built the prototype, performed the experiments, collected the data, and
wrote the manuscript. A.-L.K. produced the evaluation graphs, tables, and quantitative analysis.
D.M. reviewed the draft manuscript and made editing suggestions. All authors have read and agreed
to the published version of the manuscript.

Funding: This work made use of the Open Science Data Cloud (OSDC), which is an Open Commons
Consortium (OCC)-sponsored project. Cloud computing resources were provided by Google Cloud
and Microsoft Azure for Research awards. Container and cloud native technologies were provided
by Weaveworks.

Institutional Review Board Statement: This research project received ethics approval from the Local
Research Ethics Committee of the School of Built Environment, Engineering and Computing at Leeds
Beckett University. Informed consent was obtained from all individual participants included in
the study.

Informed Consent Statement: Participants of the energy efficiency case study signed informed
consent regarding publishing their data.

Data Availability Statement: The data used to support the findings of this study is available from
the corresponding author upon request. The data is not publicly available due to privacy.

Acknowledgments: We would like to thank the OSDC, Google Cloud, Microsoft Azure for Research,
and Weaveworks for their support of this research.

Conflicts of Interest: The authors declare that they have no competing interest.

Appendix A

Appendix A.1 Supplementary Tables

Table A1. MC-BDP reference architecture layers.

Layer Description

Horizontal Layers

Persistence Layer
The persistence layer consists of file stores, disk space, and relational and non-relational databases.
This layer is used differently by components in other layers, namely, the node, container, service, and
messaging layers.

Node Layer

The node layer is composed of virtual machines to which containers are deployed. In order to
maximise economies of scale, MC-BDP recommends an infrastructure based on commercial clouds
and, where possible, it recommends that multiple clouds be utilised simultaneously. This is a known
strategy for mitigating the risk of vendor lock-in, as identified in the literature [18,22,103].

Container Layer

The container layer consists of containers running services based on container images. Since images
contain all the necessary configuration that a service needs to run, nothing needs to be installed on
the platform other than the container runtime, thus allowing consumers to compare offerings by
different cloud providers more easily and to migrate to a different provider if needed.

Networking Layer
The networking layer represents a network which allows containers deployed to different nodes at
different locations to communicate seamlessly. MC-BDP departs from the traditional approach of
networking machines to that of networking containers.

Orchestration Layer

MC-BDP’s orchestration layer is responsible for launching, stopping, and managing containers in a
cluster. It is therefore responsible for managing services deployed to containers, registering
additional nodes from different clouds (or removing them), scaling the number of containers that a
service runs on, controlling which containers run on which nodes, and monitoring the overall state of
the cluster.

Service Layer
The service layer comprises the applications deployed to the container cluster, which range from
smaller-scale deployments such as front-end user interfaces to larger-scale frameworks for big data
processing distributed across hundreds of containers.

Appl. Sci. 2023, 13, 12635 48 of 68

Table A1. Cont.

Layer Description

Vertical Layers

Security Layer

The security layer is orthogonal to all other layers since it is implemented in multiple contexts.
Encryption, for example, can be configured independently at the framework, orchestration,
networking, messaging, and persistence levels. Due to the complexity inherent to the security aspect
of large-scale cloud-based systems, our study recommends addressing it through a systematic and
comprehensive framework which is multi-layer and multi-purpose, such as the Cloud Computing
Adoption Framework (CCAF) [62].

Monitoring Layer

The monitoring layer consists of services aimed at providing metrics related to the performance of
specific components. Since diverse aspects of a system can and usually are monitored, this layer is
also orthogonal to the others, and would likewise benefit from a systematic approach such as a
multi-layer and multi-purpose framework.

Messaging Layer

The messaging layer is used primarily to facilitate the transmission of data from one system to
another. One example of such usage in the context of streaming architectures is use as a sink or
output for real-time data from IOT devices and as a source or input for big data processing
frameworks. Likewise, the messaging layer could be configured as a sink for the result of the data
processing performed by the big data framework and as a source for subsequent processing by the
same or different framework.

Table A2. Experimental design for the evaluation of MC-BDP reference architecture.

Experimental Design Environment Setup Using Multi-Cloud Clusters of Azure and Google Cloud Virtual Machines.

Experimental Setup

Experiment Parallelism Azure VMs Google VMs

Scalability

Single-Cloud Three Workers 3 3 0

Multi-Cloud Three Workers 3 2 1

Single-Cloud Six Workers 6 6 0

Multi-Cloud Six Workers 6 2 4

Fault Tolerance

Single-Cloud Three Workers 2 3 0

Multi-Cloud Three Workers 2 2 1

Single-Cloud Six Workers 4 6 0

Multi-Cloud Six Workers 4 4 2

Technology Agnosticism

Single-Cloud Three Workers Beam 3 3 0

Single-Cloud Three Workers Flink 3 3 0

Multi-Cloud Three Workers Beam 3 2 1

Multi-Cloud Three Workers Flink 3 2 1

Single-Cloud Six Workers Beam 6 6 2

Single-Cloud Six Workers Flink 6 6 2

Multi-Cloud Six Workers Beam 6 4 0

Multi-Cloud Six Workers Flink 6 4 0

Appl. Sci. 2023, 13, 12635 49 of 68

Table A2. Cont.

Experimental Design Environment Setup Using Multi-Cloud Clusters of Azure and Google Cloud Virtual Machines.

Experimental Setup

Experiment Parallelism Azure VMs Google VMs

Windowing Rate vs. Resource Utilisation

Multi-Cloud Three Workers 3 2 1

Multi-Cloud Six Workers 6 3 3

Multi-Cloud Ten Workers 10 6 4

Container Co-location

One Container per node 8 4 4

Two Containers per node 8 2 2

Four Containers per node 8 1 1

Table A3. Experiments conducted for the evaluation of MC-BDP reference architecture.

Experiments
Conducted

Scalability

Single-Cloud
Three Workers

Exp. 1
2 records/min

Exp. 2
2 records/s

Exp. 3
2 records/100 s

Exp. 4
2 records/10 ms

Exp. 5
2 records/ms

Multi-Cloud
Three Workers

Exp. 6
2 records/min

Exp. 7
2 records/s

Exp. 8
2 records/100 s

Exp. 9
2 records/100 s

Exp. 10
2 records/ms

Single-Cloud Six
Workers

Exp. 11
2 records/min

Exp. 12
2 records/s

Exp. 13
2 records/100 s

Exp. 14
2 records/100 s

Exp. 15
2 records/ms

Multi-Cloud Six
Workers

Exp. 16
2 records/min

Exp. 17
2 records/s

Exp. 18
2 records/100 s

Exp. 19
2 records/100 s

Exp. 20
2 records/ms

Fault Tolerance

Single-Cloud
Three Workers

Exp. 21
2 records/min

Exp. 22
2 records/s

Exp. 23
2 records/100 s

Exp. 24
2 records/10 ms

Exp. 25
2 records/ms

Multi-Cloud
Three Workers

Exp. 26
2 records/min

Exp. 27
2 records/s

Exp. 28
2 records/100 s

Exp. 29
2 records/10 ms

Exp. 30
2 records/ms

Single-Cloud Six
Workers

Exp. 31
2 records/min

Exp. 32
2 records/s

Exp. 33
2 records/100 s

Exp. 34
2 records/10 ms

Exp. 35
2 records/ms

Multi-Cloud Six
Workers

Exp. 36
2 records/min

Exp. 37
2 records/s

Exp. 38
2 records/100 s

Exp. 39
2 records/10 ms

Exp. 40
2 records/ms

Technology Agnosticism

Single-Cloud
Three

Workers Beam

Exp. 41
2 records/min

Exp. 42
2 records/s

Exp. 43
2 records/100 s

Exp. 44
2 records/10 ms

Exp. 45
2 records/ms

Single-Cloud
Three

Workers Flink

Exp. 46
2 records/min

Exp. 47
2 records/s

Exp. 48
2 records/100 s

Exp. 49
2 records/10 ms

Exp. 50
2 records/ms

Multi-Cloud
Three

Workers Beam

Exp. 51
2 records/min

Exp. 52
2 records/s

Exp. 53
records/100 s

Exp. 54
2 records/10 ms

Exp. 55
2 records/ms

Multi-Cloud
Three

Workers Flink

Exp. 56
2 records/min

Exp. 57
2 records/s

Exp. 58
records/100 s

Exp. 59
records/10 ms

Exp. 60
2 records/ms

Single-Cloud Six
Workers Beam

Exp. 61
2 records/min

Exp. 62
2 records/s

Exp. 63
2 records/100 s

Exp. 64
2 records/10 ms

Exp. 65
2 records/ms

Single-Cloud Six
Workers Flink

Exp. 66
2 records/min

Exp. 67
2 records/s

Exp. 68
2 records/100 s

Exp. 69
2 records/10 ms

Exp. 70
2 records/ms

Multi-Cloud Six
Workers Beam

Exp. 71
2 records/min

Exp. 72
2 records/s

Exp. 73
2 records/100 s

Exp. 74
2 records/10 ms

Exp. 75
2 records/ms

Multi-Cloud Six
Workers Flink

Exp. 76
2 records/min

Exp. 77
2 records/s

Exp. 78
2 records/100 s

Exp. 79
2 records/10 ms

Exp. 80
2 records/ms

Appl. Sci. 2023, 13, 12635 50 of 68

Table A3. Cont.

Experiments
Conducted

Windowing Rate versus Resource Utilisation

Multi-Cloud
Three Workers

Exp. 81
R = 2.0

5 s start every 10 s

Exp. 82
R = 1.5

5 s start every 7.5 s

Exp. 83
R = 1.0

5 s start every 5 s

Exp. 84
R = 0.2

5 s start every 1 s

Exp. 85
R = 0.1

5 s start every 0.5 s

Multi-Cloud Six
Workers

Exp. 86
R = 2.0

5 s start every 10 s

Exp. 87
R = 1.5

5 s start every 7.5 s

Exp. 88
R = 1.0

5 s start every 5 s

Exp. 89
R = 0.2

5 s start every 1 s

Exp. 90
R = 0.1

5 s start every 0.5 s

Multi-Cloud Ten
Workers

Exp. 91
R = 2.0

5 s start every 10 s

Exp. 92
R = 1.5

5 s start every 7.5 s

Exp. 93
R = 1.0

5 s start every 5 s

Exp. 94
R = 0.2

5 s start every 1 s

Exp. 95
R = 0.1

5 s start every 0.5 s

Container Co-location

One Container
per node

Exp. 96
R = 2.0

5 s start every 10 s

Exp. 97
R = 1.5

5 s start every 7.5 s

Exp. 98
R = 1.0

5 s start every 5 s

Exp. 99
R = 0.2

5 s start every 1 s

Exp. 100
R = 0.1

5 s start every 0.5 s

Two Containers
per node

Exp. 101
R = 2.0

5 s start every 10 s

Exp. 102
R = 1.5

5 s start every 7.5 s

Exp. 103
R = 1.0

5 s start every 5 s

Exp. 104
R = 0.2

5 s start every 1 s

Exp. 105
R = 0.1

5 s start every 0.5 s

Four Containers
per node

Exp. 106
R = 2.0

5 s start every 10 s

Exp. 107
R = 1.5

5 s start every 7.5 s

Exp. 108
R = 1.0

5 s start every 5 s

Exp. 109
R = 0.2

5 s start every 1 s

Exp. 110
R = 0.1

5 s start every 0.5 s

Table A4. Performance metrics used in the evaluation of MC-BDP reference architecture.

Performance
Metrics

Container CPU
Utilisation

Container Memory
Utilisation

Container Network
Utilisation Additional Metric

Scalability Metrics

Average and maximum
CPU utilisation by a

container during
experiment

execution time.

Average and maximum
memory utilisation by

a container during
experiment execution

time (in MB).

Total number of bytes
transmitted and
received over a

network by a container
during experiment

execution time.

Fault Tolerance Metrics

Average and maximum
CPU utilisation by a

container during
experiment

execution time.

Average and maximum
memory utilisation by

a container during
experiment execution

time (in MB).

Total number of bytes
transmitted and
received over a

network by a container
during experiment

execution time.

Records Processed
Percentage of total number of

records processed compared to
total number of

transmitted records

Technology Agnosticism Metrics

Average and maximum
CPU utilisation by a

container during
experiment

execution time.

Average and maximum
memory utilisation by

a container during
experiment execution

time (in MB).

Total number of bytes
transmitted and
received over a

network by a container
during experiment

execution time.

Windowing Rate versus Resource Utilisation Metrics

Average and maximum
CPU utilisation by a

container during
experiment

execution time.

Average and maximum
memory utilisation by

a container during
experiment

execution time (in MB).

Total number of bytes
transmitted and
received over a

network by a container
during experiment

execution time.

Data Volume Processed
Total number of kilobytes and

total number of records received
by each worker for processing
after the windowing function

is applied.

Appl. Sci. 2023, 13, 12635 51 of 68

Table A4. Cont.

Performance
Metrics

Container CPU
Utilisation

Container Memory
Utilisation

Container Network
Utilisation Additional Metric

Container Co-Location Metrics

Average and maximum
CPU utilisation by data
processing containers

running a node during
experiment

execution time.

Average and maximum
CPU utilisation by data
processing containers

running a node during
experiment execution

time (in MB).

Total number of bytes
transmitted and
received over a

network by the data
processing containers

during experiment
execution time.

Data Volume Processed
Total number of kilobytes and

total number of records received
by each worker for processing
after the windowing function

is applied.

Table A5. Summary of regression models for average CPU utilisation.

Average CPU Utilisation by Velocity

Scalability Metrics

Appl. Sci. 2023, 13, x FOR PEER REVIEW 51 of 70

Table A5. Summary of regression models for average CPU utilisation.

Average CPU Utilisation by Velocity

Scalability Metrics

Fault Tolerance Metrics

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Fault Tolerance Metrics

Appl. Sci. 2023, 13, x FOR PEER REVIEW 51 of 70

Table A5. Summary of regression models for average CPU utilisation.

Average CPU Utilisation by Velocity

Scalability Metrics

Fault Tolerance Metrics

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Appl. Sci. 2023, 13, 12635 52 of 68

Table A5. Cont.

Average CPU Utilisation by Velocity

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Appl. Sci. 2023, 13, x FOR PEER REVIEW 51 of 70

Table A5. Summary of regression models for average CPU utilisation.

Average CPU Utilisation by Velocity

Scalability Metrics

Fault Tolerance Metrics

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers
Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Appl. Sci. 2023, 13, x FOR PEER REVIEW 52 of 70

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Average Node CPU Utilisation by Node Cluster

Table A6. Summary of regression models for maximum CPU utilisation.

Maximum CPU Utilisation by Velocity

Scalability Metrics

Fault Tolerance Metrics

Windowing Rate versus Resource Utilisation Metrics

Appl. Sci. 2023, 13, x FOR PEER REVIEW 52 of 70

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Average Node CPU Utilisation by Node Cluster

Table A6. Summary of regression models for maximum CPU utilisation.

Maximum CPU Utilisation by Velocity

Scalability Metrics

Fault Tolerance Metrics

Appl. Sci. 2023, 13, x FOR PEER REVIEW 52 of 70

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Average Node CPU Utilisation by Node Cluster

Table A6. Summary of regression models for maximum CPU utilisation.

Maximum CPU Utilisation by Velocity

Scalability Metrics

Fault Tolerance Metrics

Container Co-location Metrics

Average Node CPU Utilisation by Node Cluster

Appl. Sci. 2023, 13, x FOR PEER REVIEW 52 of 70

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Average Node CPU Utilisation by Node Cluster

Table A6. Summary of regression models for maximum CPU utilisation.

Maximum CPU Utilisation by Velocity

Scalability Metrics

Fault Tolerance Metrics

Appl. Sci. 2023, 13, 12635 53 of 68

Table A6. Summary of regression models for maximum CPU utilisation.

Maximum CPU Utilisation by Velocity

Scalability Metrics

Appl. Sci. 2023, 13, x FOR PEER REVIEW 52 of 70

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Average Node CPU Utilisation by Node Cluster

Table A6. Summary of regression models for maximum CPU utilisation.

Maximum CPU Utilisation by Velocity

Scalability Metrics

Fault Tolerance Metrics

Fault Tolerance Metrics

Appl. Sci. 2023, 13, x FOR PEER REVIEW 53 of 70

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Maximum Node CPU Utilisation by Node Cluster

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Appl. Sci. 2023, 13, x FOR PEER REVIEW 53 of 70

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Maximum Node CPU Utilisation by Node Cluster

Appl. Sci. 2023, 13, 12635 54 of 68

Table A6. Cont.

Maximum CPU Utilisation by Velocity

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Appl. Sci. 2023, 13, x FOR PEER REVIEW 53 of 70

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Maximum Node CPU Utilisation by Node Cluster

Windowing Rate versus Resource Utilisation Metrics

Appl. Sci. 2023, 13, x FOR PEER REVIEW 53 of 70

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Maximum Node CPU Utilisation by Node Cluster

Appl. Sci. 2023, 13, x FOR PEER REVIEW 53 of 70

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Maximum Node CPU Utilisation by Node Cluster

Container Co-location Metrics

Maximum Node CPU Utilisation by Node Cluster

Appl. Sci. 2023, 13, x FOR PEER REVIEW 54 of 70

Appl. Sci. 2023, 13, x FOR PEER REVIEW 54 of 70

Table A7. Average memory utilisation graphs and regression models.

Average Memory Utilisation by Velocity

Scalability Metrics

Appl. Sci. 2023, 13, x FOR PEER REVIEW 55 of 70

Table A7. Average memory utilisation graphs and regression models.

Average Memory Utilisation by Velocity

Scalability Metrics

Fault Tolerance Metrics

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Appl. Sci. 2023, 13, 12635 55 of 68

Table A7. Cont.

Average Memory Utilisation by Velocity

Fault Tolerance Metrics

Appl. Sci. 2023, 13, x FOR PEER REVIEW 55 of 70

Table A7. Average memory utilisation graphs and regression models.

Average Memory Utilisation by Velocity

Scalability Metrics

Fault Tolerance Metrics

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Appl. Sci. 2023, 13, x FOR PEER REVIEW 55 of 70

Table A7. Average memory utilisation graphs and regression models.

Average Memory Utilisation by Velocity

Scalability Metrics

Fault Tolerance Metrics

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Appl. Sci. 2023, 13, x FOR PEER REVIEW 56 of 70

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Average Node Memory Utilisation by Node Cluster

Table A8. Summary of regression models for maximum memory utilisation.

Maximum Memory Utilisation by Velocity

Scalability Metrics

Fault Tolerance Metrics

Windowing Rate versus Resource Utilisation Metrics

Appl. Sci. 2023, 13, x FOR PEER REVIEW 56 of 70

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Average Node Memory Utilisation by Node Cluster

Table A8. Summary of regression models for maximum memory utilisation.

Maximum Memory Utilisation by Velocity

Scalability Metrics

Fault Tolerance Metrics

Appl. Sci. 2023, 13, x FOR PEER REVIEW 56 of 70

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Average Node Memory Utilisation by Node Cluster

Table A8. Summary of regression models for maximum memory utilisation.

Maximum Memory Utilisation by Velocity

Scalability Metrics

Fault Tolerance Metrics

Appl. Sci. 2023, 13, 12635 56 of 68

Table A7. Cont.

Average Memory Utilisation by Velocity

Container Co-location Metrics

Average Node Memory Utilisation by Node Cluster

Appl. Sci. 2023, 13, x FOR PEER REVIEW 56 of 70

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Average Node Memory Utilisation by Node Cluster

Table A8. Summary of regression models for maximum memory utilisation.

Maximum Memory Utilisation by Velocity

Scalability Metrics

Fault Tolerance Metrics

Table A8. Summary of regression models for maximum memory utilisation.

Maximum Memory Utilisation by Velocity

Scalability Metrics

Appl. Sci. 2023, 13, x FOR PEER REVIEW 56 of 70

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Average Node Memory Utilisation by Node Cluster

Table A8. Summary of regression models for maximum memory utilisation.

Maximum Memory Utilisation by Velocity

Scalability Metrics

Fault Tolerance Metrics

Fault Tolerance Metrics

Appl. Sci. 2023, 13, x FOR PEER REVIEW 57 of 70

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Maximum Node Memory Utilisation by Node Cluster

Appl. Sci. 2023, 13, 12635 57 of 68

Table A8. Cont.

Maximum Memory Utilisation by Velocity

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Appl. Sci. 2023, 13, x FOR PEER REVIEW 57 of 70

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Maximum Node Memory Utilisation by Node Cluster

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Appl. Sci. 2023, 13, x FOR PEER REVIEW 57 of 70

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Maximum Node Memory Utilisation by Node Cluster

Windowing Rate versus Resource Utilisation Metrics

Appl. Sci. 2023, 13, x FOR PEER REVIEW 57 of 70

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Maximum Node Memory Utilisation by Node Cluster

Appl. Sci. 2023, 13, x FOR PEER REVIEW 57 of 70

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Maximum Node Memory Utilisation by Node Cluster

Container Co-location Metrics

Maximum Node Memory Utilisation by Node Cluster

Appl. Sci. 2023, 13, x FOR PEER REVIEW 58 of 70

Appl. Sci. 2023, 13, 12635 58 of 68

Table A9. Network utilisation (gigabytes sent over the network)—graphs and regression models.

Network Utilisation: Total Number of Gigabytes Sent over the Network

Scalability Metrics

Appl. Sci. 2023, 13, x FOR PEER REVIEW 59 of 70

Table A9. Network utilisation (gigabytes sent over the network)—graphs and regression models.

Network Utilisation: Total Number of Gigabytes Sent over the Network

Scalability Metrics

Fault Tolerance Metrics

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Fault Tolerance Metrics

Appl. Sci. 2023, 13, x FOR PEER REVIEW 59 of 70

Table A9. Network utilisation (gigabytes sent over the network)—graphs and regression models.

Network Utilisation: Total Number of Gigabytes Sent over the Network

Scalability Metrics

Fault Tolerance Metrics

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Appl. Sci. 2023, 13, x FOR PEER REVIEW 59 of 70

Table A9. Network utilisation (gigabytes sent over the network)—graphs and regression models.

Network Utilisation: Total Number of Gigabytes Sent over the Network

Scalability Metrics

Fault Tolerance Metrics

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Appl. Sci. 2023, 13, 12635 59 of 68

Table A9. Cont.

Network Utilisation: Total Number of Gigabytes Sent over the Network

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Appl. Sci. 2023, 13, x FOR PEER REVIEW 60 of 70

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Maximum Node Network Utilisation by Node Cluster

Table A10. Network utilisation (gigabytes received over the network)—graphs and regression mod-

els.

Network Utilisation: Total Number of Gigabytes Received over the Network

Scalability Metrics

Fault Tolerance Metrics

Windowing Rate versus Resource Utilisation Metrics

Appl. Sci. 2023, 13, x FOR PEER REVIEW 60 of 70

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Maximum Node Network Utilisation by Node Cluster

Table A10. Network utilisation (gigabytes received over the network)—graphs and regression mod-

els.

Network Utilisation: Total Number of Gigabytes Received over the Network

Scalability Metrics

Fault Tolerance Metrics

Appl. Sci. 2023, 13, x FOR PEER REVIEW 60 of 70

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Maximum Node Network Utilisation by Node Cluster

Table A10. Network utilisation (gigabytes received over the network)—graphs and regression mod-

els.

Network Utilisation: Total Number of Gigabytes Received over the Network

Scalability Metrics

Fault Tolerance Metrics

Container Co-location Metrics

Maximum Node Network Utilisation by Node Cluster

Appl. Sci. 2023, 13, x FOR PEER REVIEW 60 of 70

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Maximum Node Network Utilisation by Node Cluster

Table A10. Network utilisation (gigabytes received over the network)—graphs and regression mod-

els.

Network Utilisation: Total Number of Gigabytes Received over the Network

Scalability Metrics

Fault Tolerance Metrics

Appl. Sci. 2023, 13, x FOR PEER REVIEW 60 of 70

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Maximum Node Network Utilisation by Node Cluster

Table A10. Network utilisation (gigabytes received over the network)—graphs and regression mod-

els.

Network Utilisation: Total Number of Gigabytes Received over the Network

Scalability Metrics

Fault Tolerance Metrics

Table A10. Network utilisation (gigabytes received over the network)—graphs and regression models.

Network Utilisation: Total Number of Gigabytes Received over the Network

Scalability Metrics

Appl. Sci. 2023, 13, x FOR PEER REVIEW 60 of 70

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Maximum Node Network Utilisation by Node Cluster

Table A10. Network utilisation (gigabytes received over the network)—graphs and regression mod-

els.

Network Utilisation: Total Number of Gigabytes Received over the Network

Scalability Metrics

Fault Tolerance Metrics

Appl. Sci. 2023, 13, 12635 60 of 68

Table A10. Cont.

Network Utilisation: Total Number of Gigabytes Received over the Network

Fault Tolerance Metrics

Appl. Sci. 2023, 13, x FOR PEER REVIEW 61 of 70

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Maximum Node Network Utilisation by Node Cluster

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Appl. Sci. 2023, 13, x FOR PEER REVIEW 61 of 70

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Maximum Node Network Utilisation by Node Cluster

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Appl. Sci. 2023, 13, x FOR PEER REVIEW 61 of 70

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Maximum Node Network Utilisation by Node Cluster

Windowing Rate versus Resource Utilisation Metrics

Appl. Sci. 2023, 13, x FOR PEER REVIEW 61 of 70

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Maximum Node Network Utilisation by Node Cluster

Appl. Sci. 2023, 13, x FOR PEER REVIEW 61 of 70

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Windowing Rate versus Resource Utilisation Metrics

Container Co-location Metrics

Maximum Node Network Utilisation by Node Cluster

Appl. Sci. 2023, 13, 12635 61 of 68

Table A10. Cont.

Network Utilisation: Total Number of Gigabytes Received over the Network

Container Co-location Metrics

Maximum Node Network Utilisation by Node Cluster

Appl. Sci. 2023, 13, x FOR PEER REVIEW 62 of 70

Appl. Sci. 2023, 13, x FOR PEER REVIEW 62 of 70

Table A11. Network utilisation for technology agnosticism (gigabytes received and sent by the job
manager)—graphs and regression models.

Total Gigabytes Received via the Network by the Job Manager

Technology Agnosticism (Beam and Flink) for Three Workers

Appl. Sci. 2023, 13, x FOR PEER REVIEW 63 of 70

Table A11. Network utilisation for technology agnosticism (gigabytes received and sent by the job

manager)—graphs and regression models.

Total Gigabytes Received via the Network by the Job Manager

Technology Agnosticism (Beam and Flink) for Three Workers

Technology Agnosticism (Beam and Flink) for Six Workers

Total Gigabytes Sent via the Network by the Job Manager

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Technology Agnosticism (Beam and Flink) for Six Workers

Appl. Sci. 2023, 13, x FOR PEER REVIEW 63 of 70

Table A11. Network utilisation for technology agnosticism (gigabytes received and sent by the job

manager)—graphs and regression models.

Total Gigabytes Received via the Network by the Job Manager

Technology Agnosticism (Beam and Flink) for Three Workers

Technology Agnosticism (Beam and Flink) for Six Workers

Total Gigabytes Sent via the Network by the Job Manager

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Appl. Sci. 2023, 13, 12635 62 of 68

Table A11. Cont.

Total Gigabytes Received via the Network by the Job Manager

Total Gigabytes Sent via the Network by the Job Manager

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Appl. Sci. 2023, 13, x FOR PEER REVIEW 63 of 70

Table A11. Network utilisation for technology agnosticism (gigabytes received and sent by the job

manager)—graphs and regression models.

Total Gigabytes Received via the Network by the Job Manager

Technology Agnosticism (Beam and Flink) for Three Workers

Technology Agnosticism (Beam and Flink) for Six Workers

Total Gigabytes Sent via the Network by the Job Manager

Technology Agnosticism Metrics (Beam and Flink) for Three Workers

Technology Agnosticism Metrics (Beam and Flink) for Six Workers Technology Agnosticism Metrics (Beam and Flink) for Six Workers

Appl. Sci. 2023, 13, x FOR PEER REVIEW 64 of 70

Table A12. Network utilisation for windowing rate versus resource utilisation (gigabytes received
and sent by the job manager)—graphs and regression models.

Total Gigabytes Received via the Network by the Job Manager

Windowing Rate versus Resource Utilisation

Appl. Sci. 2023, 13, x FOR PEER REVIEW 65 of 70

Table A12. Network utilisation for windowing rate versus resource utilisation (gigabytes received

and sent by the job manager)—graphs and regression models.

Total Gigabytes Received via the Network by the Job Manager

Windowing Rate versus Resource Utilisation

Total Gigabytes Sent via the Network by the Job Manager

Windowing Rate versus Resource Utilisation

Table A13. Network utilisation for container co-location (gigabytes received and sent by the job

manager)—graphs and regression models.

Total Gigabytes Received by the Job Manager over the Network by Number of Containers per Node

Container Co-Location

Maximum Node Network Utilisation by Node Cluster

Total Number of GB Sent by the Job Manager over the Network by Number of Containers per Node

Container Co-Location

Maximum Node Network Utilisation by Node Cluster

Total Gigabytes Sent via the Network by the Job Manager

Appl. Sci. 2023, 13, 12635 63 of 68

Table A12. Cont.

Total Gigabytes Received via the Network by the Job Manager

Windowing Rate versus Resource Utilisation

Appl. Sci. 2023, 13, x FOR PEER REVIEW 65 of 70

Table A12. Network utilisation for windowing rate versus resource utilisation (gigabytes received

and sent by the job manager)—graphs and regression models.

Total Gigabytes Received via the Network by the Job Manager

Windowing Rate versus Resource Utilisation

Total Gigabytes Sent via the Network by the Job Manager

Windowing Rate versus Resource Utilisation

Table A13. Network utilisation for container co-location (gigabytes received and sent by the job

manager)—graphs and regression models.

Total Gigabytes Received by the Job Manager over the Network by Number of Containers per Node

Container Co-Location

Maximum Node Network Utilisation by Node Cluster

Total Number of GB Sent by the Job Manager over the Network by Number of Containers per Node

Container Co-Location

Maximum Node Network Utilisation by Node Cluster

Table A13. Network utilisation for container co-location (gigabytes received and sent by the job
manager)—graphs and regression models.

Total Gigabytes Received by the Job Manager over the Network by Number of Containers per Node

Container Co-Location

Maximum Node Network Utilisation by Node Cluster

Appl. Sci. 2023, 13, x FOR PEER REVIEW 65 of 70

Table A12. Network utilisation for windowing rate versus resource utilisation (gigabytes received

and sent by the job manager)—graphs and regression models.

Total Gigabytes Received via the Network by the Job Manager

Windowing Rate versus Resource Utilisation

Total Gigabytes Sent via the Network by the Job Manager

Windowing Rate versus Resource Utilisation

Table A13. Network utilisation for container co-location (gigabytes received and sent by the job

manager)—graphs and regression models.

Total Gigabytes Received by the Job Manager over the Network by Number of Containers per Node

Container Co-Location

Maximum Node Network Utilisation by Node Cluster

Total Number of GB Sent by the Job Manager over the Network by Number of Containers per Node

Container Co-Location

Maximum Node Network Utilisation by Node Cluster

Appl. Sci. 2023, 13, x FOR PEER REVIEW 65 of 70

Table A12. Network utilisation for windowing rate versus resource utilisation (gigabytes received

and sent by the job manager)—graphs and regression models.

Total Gigabytes Received via the Network by the Job Manager

Windowing Rate versus Resource Utilisation

Total Gigabytes Sent via the Network by the Job Manager

Windowing Rate versus Resource Utilisation

Table A13. Network utilisation for container co-location (gigabytes received and sent by the job

manager)—graphs and regression models.

Total Gigabytes Received by the Job Manager over the Network by Number of Containers per Node

Container Co-Location

Maximum Node Network Utilisation by Node Cluster

Total Number of GB Sent by the Job Manager over the Network by Number of Containers per Node

Container Co-Location

Maximum Node Network Utilisation by Node Cluster

Total Number of GB Sent by the Job Manager over the Network by Number of Containers per Node

Container Co-Location

Maximum Node Network Utilisation by Node Cluster

Appl. Sci. 2023, 13, x FOR PEER REVIEW 65 of 70

Table A12. Network utilisation for windowing rate versus resource utilisation (gigabytes received

and sent by the job manager)—graphs and regression models.

Total Gigabytes Received via the Network by the Job Manager

Windowing Rate versus Resource Utilisation

Total Gigabytes Sent via the Network by the Job Manager

Windowing Rate versus Resource Utilisation

Table A13. Network utilisation for container co-location (gigabytes received and sent by the job

manager)—graphs and regression models.

Total Gigabytes Received by the Job Manager over the Network by Number of Containers per Node

Container Co-Location

Maximum Node Network Utilisation by Node Cluster

Total Number of GB Sent by the Job Manager over the Network by Number of Containers per Node

Container Co-Location

Maximum Node Network Utilisation by Node Cluster

Appl. Sci. 2023, 13, x FOR PEER REVIEW 65 of 70

Table A12. Network utilisation for windowing rate versus resource utilisation (gigabytes received

and sent by the job manager)—graphs and regression models.

Total Gigabytes Received via the Network by the Job Manager

Windowing Rate versus Resource Utilisation

Total Gigabytes Sent via the Network by the Job Manager

Windowing Rate versus Resource Utilisation

Table A13. Network utilisation for container co-location (gigabytes received and sent by the job

manager)—graphs and regression models.

Total Gigabytes Received by the Job Manager over the Network by Number of Containers per Node

Container Co-Location

Maximum Node Network Utilisation by Node Cluster

Total Number of GB Sent by the Job Manager over the Network by Number of Containers per Node

Container Co-Location

Maximum Node Network Utilisation by Node Cluster

Appendix A.2 Azure Log Analytics Queries

Appl. Sci. 2023, 13, x FOR PEER REVIEW 62 of 66

Appendix A.2. Azure Log Analytics Queries

Figure A1. Azure Log Analytics queries to extract metrics.

Figure A2. Azure Log Analytics queries to extract metrics—adjusted to aggregate by node.

References

1. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. ACM. Commun. 2008, 51, 107.

https://doi.org/10.1145/1327452.1327492.

2. Patel, K.; Sakaria, Y.; Bhadane, C. Real Time Data Processing Frameworks. Int. J. Data Min. Knowl. Manag. Process 2015, 5, 49–63.

https://doi.org/10.5121/ijdkp.2015.5504.

3. Li, J.; Maier, D.; Tufte, K.; Papadimos, V.; Tucker, P.A. Semantics and Evaluation Techniques for Window Aggregates in Data

Streams. In Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, New York, NY, USA,

14–16 June 2005; pp. 311–322. https://doi.org/10.1145/1066157.1066193.

4. Akidau, T.; Balikov, A.; Bekiroğlu, K.; Chernyak, S.; Haberman, J.; Lax, R.; McVeety, S.; Mills, D.; Nordstrom, P.; Whittle, S.

MillWheel: Fault-tolerant stream processing at internet scale. Proc. VLDB Endow. 2013, 6, 1033–1044.

https://doi.org/10.14778/2536222.2536229.

5. Kreps, J. Questioning the Lambda Architecture—O’Reilly Media. 2 July 2014. Available online:

https://www.oreilly.com/ideas/questioning-the-lambda-architecture (accessed on 28 October 2016).

6. Chen, G.J.; Wiener, J.L.; Iyer, S.; Jaiswal, A.; Lei, R.; Simha, N.; Wang, W.; Wilfong, K.; Williamson, T.; Yilmaz, S.. Realtime Data

Processing at Facebook. In Proceedings of the 2016 International Conference on Management of Data, New York, NY, USA, 25

June 2016; pp. 1087–1098. https://doi.org/10.1145/2882903.2904441.

7. Krishnan, S. Discovery and Consumption of Analytics Data at Twitter. Twitter Engineering Blog. 29 June 2016. Available online:

https://blog.twitter.com/engineering/en_us/topics/insights/2016/discovery-and-consumption-of-analytics-data-at-twitter.html

(accessed on 9 February 2018).

8. Kashlev, A.; Lu, S.; Mohan, A. Big Data Workflows: A Reference Architecture and The Dataview System. Serv. Trans. Big Data

2017, 4, 19.

9. Ta, V.-D.; Liu, C.-M.; Nkabinde, G.W. Big data stream computing in healthcare real-time analytics. In Proceedings of the 2016

IEEE International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, 5–7 July 2016; pp.

37–42. https://doi.org/10.1109/ICCCBDA.2016.7529531.

10. Klein, J.; Buglak, R.; Blockow, D.; Wuttke, T.; Cooper, B. A Reference Architecture for Big Data Systems in the National Security

Domain. In Proceedings of the 2016 IEEE/ACM 2nd International Workshop on Big Data Software Engineering (BIGDSE), 16

May 2016; pp. 51–57. https://doi.org/10.1109/BIGDSE.2016.017.

11. Ardagna, C.A.; Ceravolo, P.; Damiani, E. Big data analytics as-a-service: Issues and challenges. In Proceedings of the 2016 IEEE

International Conference on Big Data (Big Data), Washington, DC, USA, 17–20 December 2016; pp. 3638–3644.

https://doi.org/10.1109/BigData.2016.7841029.

Container CPU
Utilisation (Avg)

• Perf | where
ObjectName ==
"Container" and
CounterName == "%
Processor Time" |
where InstanceName
has "taskmanager" |
summarize
AvgCPUPercent =
avg(CounterValue) by
Computer,
InstanceName

Container CPU
Utilisation (Max)

• Perf | where
ObjectName ==
"Container" and
CounterName == "%
Processor Time" |
where InstanceName
has "taskmanager" |
summarize
MaxCPUPercent =
max(CounterValue) by
Computer,
InstanceName

Container Memory
Utilisation (Average)

• Perf | where
ObjectName ==
"Container" and
CounterName ==
"Memory Usage MB"
and InstanceName has
"taskmanager" |
summarize
AggregatedValue =
avg(CounterValue) by
Computer,
InstanceName

Container Memory
Utilisation (Max)

• Perf | where
ObjectName ==
"Container" and
CounterName ==
"Memory Usage MB"
and InstanceName has
"taskmanager" |
summarize
AggregatedValue =
max(CounterValue) by
Computer,
InstanceName

Network Receive Bytes

• search in (Perf)
ObjectName ==
"Container" and
CounterName ==
"Network Receive
Bytes" | where
InstanceName has
"taskmanager" |
summarize
NetworkReceiveBytes
= sum(CounterValue)
by Computer,
InstanceName

Network Send Bytes

• search in (Perf)
ObjectName ==
"Container" and
CounterName ==
"Network Send Bytes"
| where InstanceName
has "taskmanager" |
summarize
NetworkSendBytes =
sum(CounterValue) by
Computer,
InstanceName

Adjusted CPU Utilisation
(Avg)

• Perf | where
ObjectName ==
"Container" and
CounterName == "%
Processor Time"|
where InstanceName
has "taskmanager" |
summarize
AvgCPUPercent =
avg(CounterValue) by
Computer,
InstanceName|
summarize
sum(AvgCPUPercent)
by Computer

Adjusted CPU Utilisation
(Max)

• Perf | where
ObjectName ==
"Container" and
CounterName == "%
Processor Time"|
where InstanceName
has "taskmanager" |
summarize
avg(CounterValue) by
bin(TimeGenerated,
1m), InstanceName,
Computer| summarize
sum(avg_CounterValue
) by TimeGenerated,
Computer| summarize
max(sum_avg_Counter
Value) by Computer

Adjusted Memory
Utilisation (Average)

• Perf | where
ObjectName ==
"Container" and
CounterName ==
"Memory Usage MB"
and InstanceName has
"taskmanager"|
summarize AvgMemory
= avg(CounterValue) by
Computer,
InstanceName |
summarize
sum(AvgMemory) by
Computer

Adjusted Memory
Utilisation (Max)

• Perf | where
ObjectName ==
"Container" and
CounterName ==
"Memory Usage MB"|
where InstanceName
has "taskmanager" |
summarize
avg(CounterValue) by
bin(TimeGenerated,
1m), InstanceName,
Computer| summarize
sum(avg_CounterValue
) by TimeGenerated,
Computer| summarize
max(sum_avg_Counter
Value) by Computer

Cluster Memory
Utilisation (Max)

• Perf | where
ObjectName ==
"Container" and
CounterName ==
"Memory Usage MB"|
where InstanceName
has "taskmanager" |
summarize
avg(CounterValue) by
bin(TimeGenerated,
1m), InstanceName,
Computer| summarize
sum(avg_CounterValue
) by TimeGenerated|
summarize
max(sum_avg_Counter
Value)

Adjusted Network
Receive Bytes

• search in (Perf)
ObjectName ==
"Container" and
CounterName ==
"Network Receive
Bytes" | where
InstanceName has
"taskmanager" |
summarize
NetworkReceiveBytes =
sum(CounterValue) by
Computer,
InstanceName|
summarize
sum(NetworkReceiveBy
tes) by Computer

Adjusted Network Send
Bytes

• search in (Perf)
ObjectName ==
"Container" and
CounterName ==
"Network Send Bytes" |
where InstanceName
has "taskmanager" |
summarize
NetworkSendBytes =
sum(CounterValue) by
Computer,
InstanceName|
summarize
sum(NetworkSendByte
s) by Computer

Figure A1. Azure Log Analytics queries to extract metrics.

Appl. Sci. 2023, 13, 12635 64 of 68

Appl. Sci. 2023, 13, x FOR PEER REVIEW 62 of 66

Appendix A.2. Azure Log Analytics Queries

Figure A1. Azure Log Analytics queries to extract metrics.

Figure A2. Azure Log Analytics queries to extract metrics—adjusted to aggregate by node.

References

1. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. ACM. Commun. 2008, 51, 107.

https://doi.org/10.1145/1327452.1327492.

2. Patel, K.; Sakaria, Y.; Bhadane, C. Real Time Data Processing Frameworks. Int. J. Data Min. Knowl. Manag. Process 2015, 5, 49–63.

https://doi.org/10.5121/ijdkp.2015.5504.

3. Li, J.; Maier, D.; Tufte, K.; Papadimos, V.; Tucker, P.A. Semantics and Evaluation Techniques for Window Aggregates in Data

Streams. In Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, New York, NY, USA,

14–16 June 2005; pp. 311–322. https://doi.org/10.1145/1066157.1066193.

4. Akidau, T.; Balikov, A.; Bekiroğlu, K.; Chernyak, S.; Haberman, J.; Lax, R.; McVeety, S.; Mills, D.; Nordstrom, P.; Whittle, S.

MillWheel: Fault-tolerant stream processing at internet scale. Proc. VLDB Endow. 2013, 6, 1033–1044.

https://doi.org/10.14778/2536222.2536229.

5. Kreps, J. Questioning the Lambda Architecture—O’Reilly Media. 2 July 2014. Available online:

https://www.oreilly.com/ideas/questioning-the-lambda-architecture (accessed on 28 October 2016).

6. Chen, G.J.; Wiener, J.L.; Iyer, S.; Jaiswal, A.; Lei, R.; Simha, N.; Wang, W.; Wilfong, K.; Williamson, T.; Yilmaz, S.. Realtime Data

Processing at Facebook. In Proceedings of the 2016 International Conference on Management of Data, New York, NY, USA, 25

June 2016; pp. 1087–1098. https://doi.org/10.1145/2882903.2904441.

7. Krishnan, S. Discovery and Consumption of Analytics Data at Twitter. Twitter Engineering Blog. 29 June 2016. Available online:

https://blog.twitter.com/engineering/en_us/topics/insights/2016/discovery-and-consumption-of-analytics-data-at-twitter.html

(accessed on 9 February 2018).

8. Kashlev, A.; Lu, S.; Mohan, A. Big Data Workflows: A Reference Architecture and The Dataview System. Serv. Trans. Big Data

2017, 4, 19.

9. Ta, V.-D.; Liu, C.-M.; Nkabinde, G.W. Big data stream computing in healthcare real-time analytics. In Proceedings of the 2016

IEEE International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, 5–7 July 2016; pp.

37–42. https://doi.org/10.1109/ICCCBDA.2016.7529531.

10. Klein, J.; Buglak, R.; Blockow, D.; Wuttke, T.; Cooper, B. A Reference Architecture for Big Data Systems in the National Security

Domain. In Proceedings of the 2016 IEEE/ACM 2nd International Workshop on Big Data Software Engineering (BIGDSE), 16

May 2016; pp. 51–57. https://doi.org/10.1109/BIGDSE.2016.017.

11. Ardagna, C.A.; Ceravolo, P.; Damiani, E. Big data analytics as-a-service: Issues and challenges. In Proceedings of the 2016 IEEE

International Conference on Big Data (Big Data), Washington, DC, USA, 17–20 December 2016; pp. 3638–3644.

https://doi.org/10.1109/BigData.2016.7841029.

Container CPU
Utilisation (Avg)

• Perf | where
ObjectName ==
"Container" and
CounterName == "%
Processor Time" |
where InstanceName
has "taskmanager" |
summarize
AvgCPUPercent =
avg(CounterValue) by
Computer,
InstanceName

Container CPU
Utilisation (Max)

• Perf | where
ObjectName ==
"Container" and
CounterName == "%
Processor Time" |
where InstanceName
has "taskmanager" |
summarize
MaxCPUPercent =
max(CounterValue) by
Computer,
InstanceName

Container Memory
Utilisation (Average)

• Perf | where
ObjectName ==
"Container" and
CounterName ==
"Memory Usage MB"
and InstanceName has
"taskmanager" |
summarize
AggregatedValue =
avg(CounterValue) by
Computer,
InstanceName

Container Memory
Utilisation (Max)

• Perf | where
ObjectName ==
"Container" and
CounterName ==
"Memory Usage MB"
and InstanceName has
"taskmanager" |
summarize
AggregatedValue =
max(CounterValue) by
Computer,
InstanceName

Network Receive Bytes

• search in (Perf)
ObjectName ==
"Container" and
CounterName ==
"Network Receive
Bytes" | where
InstanceName has
"taskmanager" |
summarize
NetworkReceiveBytes
= sum(CounterValue)
by Computer,
InstanceName

Network Send Bytes

• search in (Perf)
ObjectName ==
"Container" and
CounterName ==
"Network Send Bytes"
| where InstanceName
has "taskmanager" |
summarize
NetworkSendBytes =
sum(CounterValue) by
Computer,
InstanceName

Adjusted CPU Utilisation
(Avg)

• Perf | where
ObjectName ==
"Container" and
CounterName == "%
Processor Time"|
where InstanceName
has "taskmanager" |
summarize
AvgCPUPercent =
avg(CounterValue) by
Computer,
InstanceName|
summarize
sum(AvgCPUPercent)
by Computer

Adjusted CPU Utilisation
(Max)

• Perf | where
ObjectName ==
"Container" and
CounterName == "%
Processor Time"|
where InstanceName
has "taskmanager" |
summarize
avg(CounterValue) by
bin(TimeGenerated,
1m), InstanceName,
Computer| summarize
sum(avg_CounterValue
) by TimeGenerated,
Computer| summarize
max(sum_avg_Counter
Value) by Computer

Adjusted Memory
Utilisation (Average)

• Perf | where
ObjectName ==
"Container" and
CounterName ==
"Memory Usage MB"
and InstanceName has
"taskmanager"|
summarize AvgMemory
= avg(CounterValue) by
Computer,
InstanceName |
summarize
sum(AvgMemory) by
Computer

Adjusted Memory
Utilisation (Max)

• Perf | where
ObjectName ==
"Container" and
CounterName ==
"Memory Usage MB"|
where InstanceName
has "taskmanager" |
summarize
avg(CounterValue) by
bin(TimeGenerated,
1m), InstanceName,
Computer| summarize
sum(avg_CounterValue
) by TimeGenerated,
Computer| summarize
max(sum_avg_Counter
Value) by Computer

Cluster Memory
Utilisation (Max)

• Perf | where
ObjectName ==
"Container" and
CounterName ==
"Memory Usage MB"|
where InstanceName
has "taskmanager" |
summarize
avg(CounterValue) by
bin(TimeGenerated,
1m), InstanceName,
Computer| summarize
sum(avg_CounterValue
) by TimeGenerated|
summarize
max(sum_avg_Counter
Value)

Adjusted Network
Receive Bytes

• search in (Perf)
ObjectName ==
"Container" and
CounterName ==
"Network Receive
Bytes" | where
InstanceName has
"taskmanager" |
summarize
NetworkReceiveBytes =
sum(CounterValue) by
Computer,
InstanceName|
summarize
sum(NetworkReceiveBy
tes) by Computer

Adjusted Network Send
Bytes

• search in (Perf)
ObjectName ==
"Container" and
CounterName ==
"Network Send Bytes" |
where InstanceName
has "taskmanager" |
summarize
NetworkSendBytes =
sum(CounterValue) by
Computer,
InstanceName|
summarize
sum(NetworkSendByte
s) by Computer

Figure A2. Azure Log Analytics queries to extract metrics—adjusted to aggregate by node.

References
1. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. ACM. Commun. 2008, 51, 107. [CrossRef]
2. Patel, K.; Sakaria, Y.; Bhadane, C. Real Time Data Processing Frameworks. Int. J. Data Min. Knowl. Manag. Process 2015, 5, 49–63.

[CrossRef]
3. Li, J.; Maier, D.; Tufte, K.; Papadimos, V.; Tucker, P.A. Semantics and Evaluation Techniques for Window Aggregates in Data

Streams. In Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, New York, NY, USA,
14–16 June 2005; pp. 311–322. [CrossRef]

4. Akidau, T.; Balikov, A.; Bekiroğlu, K.; Chernyak, S.; Haberman, J.; Lax, R.; McVeety, S.; Mills, D.; Nordstrom, P.; Whittle, S.
MillWheel: Fault-tolerant stream processing at internet scale. Proc. VLDB Endow. 2013, 6, 1033–1044. [CrossRef]

5. Kreps, J. Questioning the Lambda Architecture—O’Reilly Media. 2 July 2014. Available online: https://www.oreilly.com/ideas/
questioning-the-lambda-architecture (accessed on 28 October 2016).

6. Chen, G.J.; Wiener, J.L.; Iyer, S.; Jaiswal, A.; Lei, R.; Simha, N.; Wang, W.; Wilfong, K.; Williamson, T.; Yilmaz, S. Realtime Data
Processing at Facebook. In Proceedings of the 2016 International Conference on Management of Data, New York, NY, USA, 25
June 2016; pp. 1087–1098. [CrossRef]

7. Krishnan, S. Discovery and Consumption of Analytics Data at Twitter. Twitter Engineering Blog. 29 June 2016. Available
online: https://blog.twitter.com/engineering/en_us/topics/insights/2016/discovery-and-consumption-of-analytics-data-at-
twitter.html (accessed on 9 February 2018).

8. Kashlev, A.; Lu, S.; Mohan, A. Big Data Workflows: A Reference Architecture and The Dataview System. Serv. Trans. Big Data
2017, 4, 19. [CrossRef]

9. Ta, V.-D.; Liu, C.-M.; Nkabinde, G.W. Big data stream computing in healthcare real-time analytics. In Proceedings of the 2016 IEEE
International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, 5–7 July 2016; pp. 37–42.
[CrossRef]

10. Klein, J.; Buglak, R.; Blockow, D.; Wuttke, T.; Cooper, B. A Reference Architecture for Big Data Systems in the National Security
Domain. In Proceedings of the 2016 IEEE/ACM 2nd International Workshop on Big Data Software Engineering (BIGDSE), 16
May 2016; pp. 51–57.

11. Ardagna, C.A.; Ceravolo, P.; Damiani, E. Big data analytics as-a-service: Issues and challenges. In Proceedings of the 2016 IEEE
International Conference on Big Data (Big Data), Washington, DC, USA, 17–20 December 2016; pp. 3638–3644. [CrossRef]

12. Kalan, R.S.; Ünalir, M.O. Leveraging big data technology for small and medium-sized enterprises (SMEs). In Proceedings of the
2016 6th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 20–21 October 2016; pp.
1–6. [CrossRef]

13. Liu, Y.; Soroka, A.; Han, L.; Jian, J.; Tang, M. Cloud-based big data analytics for customer insight-driven design innovation in
SMEs. Int. J. Inf. Manag. 2020, 51, 102034. [CrossRef]

14. Sen, D.; Ozturk, M.; Vayvay, O. An Overview of Big Data for Growth in SMEs. Procedia Soc. Behav. Sci. 2016, 235, 159–167.
[CrossRef]

15. Vecchio, P.D.; Minin, A.D.; Petruzzelli, A.M.; Panniello, U.; Pirri, S. Big data for open innovation in SMEs and large corporations:
Trends, opportunities, and challenges. Creat. Innov. Manag. 2018, 27, 6–22. [CrossRef]

16. Shetty, J.P.; Panda, R. An overview of cloud computing in SMEs. J. Glob. Entrep. Res. 2021, 11, 175–188. [CrossRef]
17. Sultan, N.A. Reaching for the “cloud”: How SMEs can manage. Int. J. Inf. Manag. 2011, 31, 272–278. [CrossRef]
18. Opara-Martins, J.; Sahandi, R.; Tian, F. Critical analysis of vendor lock-in and its impact on cloud computing migration: A

business perspective. J. Cloud Comput. 2016, 5, 4. [CrossRef]
19. Bange, C.; Grosser, T.; Janoschek, N. Big Data Use Cases 2015—Getting Real on Data Monetization. July 2015. Available online:

http://barc-research.com/research/big-data-use-cases-2015/ (accessed on 15 February 2019).
20. Assis, M.R.M.; Bittencourt, L.F. A survey on cloud federation architectures: Identifying functional and non-functional properties.

J. Netw. Comput. Appl. 2016, 72, 51–71. [CrossRef]
21. Naik, N. Docker container-based big data processing system in multiple clouds for everyone. In Proceedings of the 2017 IEEE

International Systems Engineering Symposium (ISSE), Vienna, Austria, 11–13 October 2017; pp. 1–7. [CrossRef]

https://doi.org/10.1145/1327452.1327492
https://doi.org/10.5121/ijdkp.2015.5504
https://doi.org/10.1145/1066157.1066193
https://doi.org/10.14778/2536222.2536229
https://www.oreilly.com/ideas/questioning-the-lambda-architecture
https://www.oreilly.com/ideas/questioning-the-lambda-architecture
https://doi.org/10.1145/2882903.2904441
https://blog.twitter.com/engineering/en_us/topics/insights/2016/discovery-and-consumption-of-analytics-data-at-twitter.html
https://blog.twitter.com/engineering/en_us/topics/insights/2016/discovery-and-consumption-of-analytics-data-at-twitter.html
https://doi.org/10.29268/stbd.2017.4.1.1
https://doi.org/10.1109/ICCCBDA.2016.7529531
https://doi.org/10.1109/BigData.2016.7841029
https://doi.org/10.1109/ICCKE.2016.7802106
https://doi.org/10.1016/j.ijinfomgt.2019.11.002
https://doi.org/10.1016/j.sbspro.2016.11.011
https://doi.org/10.1111/caim.12224
https://doi.org/10.1007/s40497-021-00273-2
https://doi.org/10.1016/j.ijinfomgt.2010.08.001
https://doi.org/10.1186/s13677-016-0054-z
http://barc-research.com/research/big-data-use-cases-2015/
https://doi.org/10.1016/j.jnca.2016.06.014
https://doi.org/10.1109/SysEng.2017.8088294

Appl. Sci. 2023, 13, 12635 65 of 68

22. Satzger, B.; Hummer, W.; Inzinger, C.; Leitner, P.; Dustdar, S. Winds of Change: From Vendor Lock-In to the Meta Cloud. IEEE
Internet Comput. 2013, 17, 69–73. [CrossRef]

23. Silva, G.C.; Rose, L.M.; Calinescu, R. Towards a Model-Driven Solution to the Vendor Lock-In Problem in Cloud Computing.
In Proceedings of the 2013 IEEE 5th International Conference on Cloud Computing Technology and Science, Bristol, UK,
2–5 December 2013; Volume 1, pp. 711–716. [CrossRef]

24. Toosi, A.N.; Calheiros, R.N.; Buyya, R. Interconnected Cloud Computing Environments: Challenges, Taxonomy, and Survey.
ACM Comput. Surv. 2014, 47, 1–47. [CrossRef]

25. Bernstein, D. Cloud Foundry Aims to Become the OpenStack of PaaS. IEEE Cloud Comput. 2014, 1, 57–60. [CrossRef]
26. Leung, A.; Spyker, A.; Bozarth, T. Titus: Introducing Containers to the Netflix Cloud. Queue 2017, 15, 53–77. [CrossRef]
27. Al-Dhuraibi, Y.; Paraiso, F.; Djarallah, N.; Merle, P. Elasticity in Cloud Computing: State of the Art and Research Challenges. IEEE

Trans. Serv. Comput. 2018, 11, 430–447. [CrossRef]
28. Rodriguez, M.A.; Buyya, R. Container-based cluster orchestration systems: A taxonomy and future directions. Softw. Pract. Exp.

2019, 49, 698–719. [CrossRef]
29. Pahl, C. Containerization and the PaaS Cloud. IEEE Cloud Comput. 2015, 2, 24–31. [CrossRef]
30. Pahl, C.; Lee, B. Containers and Clusters for Edge Cloud Architectures—A Technology Review. In Proceedings of the 2015 3rd

International Conference on Future Internet of Things and Cloud, Rome, Italy, 24–26 August 2015; pp. 379–386. [CrossRef]
31. Vergilio, T.; Ramachandran, M. Non-functional Requirements for Real World Big Data Systems—An Investigation of Big Data

Architectures at Facebook, Twitter and Netflix’. In Proceedings of the 13th International Conference on Software Technologies,
Porto, Portugal, 26–28 July 2018; pp. 833–840. [CrossRef]

32. Silva, G.C.; Rose, L.M.; Calinescu, R. A Systematic Review of Cloud Lock-In Solutions. In Proceedings of the 2013 IEEE 5th
International Conference on Cloud Computing Technology and Science, Bristol, UK, 2–5 December 2013; Volume 2, pp. 363–368.
[CrossRef]

33. Jokonya, O. Investigating Open Source Software Benefits in Public Sector. In Proceedings of the 2015 48th Hawaii International
Conference on System Sciences, Kauai, HI, USA, 5–8 January 2015; pp. 2242–2251. [CrossRef]

34. Palyart, M.; Murphy, G.C.; Masrani, V. A Study of Social Interactions in Open Source Component Use. IEEE Trans. Softw. Eng.
2018, 44, 1132–1145. [CrossRef]

35. Al-Hazmi, Y.; Campowsky, K.; Magedanz, T. A monitoring system for federated clouds. In Proceedings of the 2012 IEEE 1st
International Conference on Cloud Networking (CLOUDNET), Paris, France, 28–30 November 2012; pp. 68–74. [CrossRef]

36. Palos-Sanchez, P.R. Drivers and Barriers of the Cloud Computing in SMEs: The Position of the European Union. Harv. Deusto Bus.
Res. 2017, 6, 116–132. [CrossRef]

37. Hui, K. AWS 101: Regions and Availability Zones. Rackspace Blog. 16 February 2017. Available online: https://blog.rackspace.
com/aws-101-regions-availability-zones (accessed on 22 February 2019).

38. Scott, R. Mitigating an AWS Instance Failure with the Magic of Kubernetes. Medium. 1 March 2017. Available online:
https://medium.com/spire-labs/mitigating-an-aws-instance-failure-with-the-magic-of-kubernetes-128a44d44c14 (accessed on
24 January 2018).

39. Brodkin, J.; EC, A. “Availability Zones” into Question. Network World. 21 April 2011. Available online: https:
//www.networkworld.com/article/2202805/cloud-computing/amazon-ec2-outage-calls{-}{-}availability-zones{-}{-}into-
question.html (accessed on 22 February 2019).

40. Dayaratna, A. Microsoft Azure Recovers From Multi-Region Azure DNS Service Disruption. Cloud Comput. Today 2020, 51–56.
Available online: https://cloud-computing-today.com/2016/09/15/microsoft-azure-recovers-from-multi-region-azure-dns-
service-disruption/ (accessed on 22 February 2019).

41. Rattihalli, G. Exploring Potential for Resource Request Right-Sizing via Estimation and Container Migration in Apache Mesos. In
Proceedings of the 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion),
Zurich, Switzerland, 17–20 December 2018; pp. 59–64. [CrossRef]

42. Bass, L.; Clements, P.; Kazman, R. Software Architecture in Practice, 3rd ed.; Addison-Wesley Professional: Upper Saddle River, NJ,
USA, 2012.

43. Chang, W.L.; Boyd, D.; Levin, O.; NIST Big Data Public Working Group. NIST Big Data Interoperability Framework; National
Institute of Standards and Technology: Gaithersburg, MD, USA, 2019. [CrossRef]

44. Maier, M. Towards a Big Data Reference Architecture. Master’s Thesis, Eindhoven University of Technology, Eindhoven, The
Netherlands, 2013. Available online: https://pure.tue.nl/ws/files/46951182/761622-1.pdf (accessed on 7 December 2020).

45. Heilig, L.; Voß, S. Managing Cloud-Based Big Data Platforms: A Reference Architecture and Cost Perspective. In Big Data
Management; Márquez, F.P.G., Lev, B., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 29–45. [CrossRef]

46. Geerdink, B. A reference architecture for big data solutions introducing a model to perform predictive analytics using big data
technology. In Proceedings of the 8th International Conference for Internet Technology and Secured Transactions (ICITST-2013),
London, UK, 9–12 December 2013; pp. 71–76. [CrossRef]

47. Pääkkönen, P.; Pakkala, D. Reference Architecture and Classification of Technologies, Products and Services for Big Data Systems.
Big Data Res. 2015, 2, 166–186. [CrossRef]

https://doi.org/10.1109/MIC.2013.19
https://doi.org/10.1109/CloudCom.2013.131
https://doi.org/10.1145/2593512
https://doi.org/10.1109/MCC.2014.32
https://doi.org/10.1145/3155112.3158370
https://doi.org/10.1109/TSC.2017.2711009
https://doi.org/10.1002/spe.2660
https://doi.org/10.1109/MCC.2015.51
https://doi.org/10.1109/FiCloud.2015.35
https://doi.org/10.5220/0006825408330840
https://doi.org/10.1109/CloudCom.2013.130
https://doi.org/10.1109/HICSS.2015.268
https://doi.org/10.1109/TSE.2017.2756043
https://doi.org/10.1109/CloudNet.2012.6483657
https://doi.org/10.3926/hdbr.125
https://blog.rackspace.com/aws-101-regions-availability-zones
https://blog.rackspace.com/aws-101-regions-availability-zones
https://medium.com/spire-labs/mitigating-an-aws-instance-failure-with-the-magic-of-kubernetes-128a44d44c14
https://www.networkworld.com/article/2202805/cloud-computing/amazon-ec2-outage-calls{-}{-}availability-zones{-}{-}into-question.html
https://www.networkworld.com/article/2202805/cloud-computing/amazon-ec2-outage-calls{-}{-}availability-zones{-}{-}into-question.html
https://www.networkworld.com/article/2202805/cloud-computing/amazon-ec2-outage-calls{-}{-}availability-zones{-}{-}into-question.html
https://cloud-computing-today.com/2016/09/15/microsoft-azure-recovers-from-multi-region-azure-dns-service-disruption/
https://cloud-computing-today.com/2016/09/15/microsoft-azure-recovers-from-multi-region-azure-dns-service-disruption/
https://doi.org/10.1109/UCC-Companion.2018.00035
https://doi.org/10.6028/NIST.SP.1500-6r2
https://pure.tue.nl/ws/files/46951182/761622-1.pdf
https://doi.org/10.1007/978-3-319-45498-6_2
https://doi.org/10.1109/ICITST.2013.6750165
https://doi.org/10.1016/j.bdr.2015.01.001

Appl. Sci. 2023, 13, 12635 66 of 68

48. Belli, L.; Cirani, S.; Davoli, L.; Melegari, L.; Mónton, M.; Picone, M. An Open-Source Cloud Architecture for Big Stream IoT
Applications. In Interoperability and Open-Source Solutions for the Internet of Things, Proceedings of the International Workshop, FP7
OpenIoT Project, Held in Conjunction with SoftCOM 2014, Split, Croatia, 18 September 2014; Springer: Berlin/Heidelberg, Germany,
2015; pp. 73–88. [CrossRef]

49. Pellegrini, R.; Rottmann, P.; Strieder, G. Preventing vendor lock-ins via an interoperable multi-cloud deployment approach. In
Proceedings of the 2017 12th International Conference for Internet Technology and Secured Transactions (ICITST), Cambridge,
UK, 11–14 December 2017; pp. 382–387. [CrossRef]

50. Scolati, R.; Fronza, I.; El Ioini, N.; Samir, A.; Pahl, C. A Containerized Big Data Streaming Architecture for Edge Cloud Computing
on Clustered Single-board Devices. In Proceedings of the 9th International Conference on Cloud Computing and Services Science,
Heraklion, Greece, 2–4 May 2019; pp. 68–80. [CrossRef]

51. Moreno, J.; Serrano, M.A.; Fernández-Medina, E.; Fernández, E.B. Towards a Security Reference Architecture for Big Data. In
Proceedings of the 20th International Workshop on Design, Optimization, Languages and Analytical Processing of Big Data
Co-Located with 10th EDBT/ICDT Joint Conference (EDBT/ICDT 2018), Vienna, Austria, 26–29 March 2018; Volume 2062.
Available online: http://ceur-ws.org/Vol-2062/paper04.pdf (accessed on 6 August 2020).

52. Chen, H.; Wen, J.; Pedrycz, W.; Wu, G. Big Data Processing Workflows Oriented Real-Time Scheduling Algorithm using
Task-Duplication in Geo-Distributed Clouds. IEEE Trans. Big Data 2020, 6, 131–144. [CrossRef]

53. Verbitskiy, I.; Thamsen, L.; Kao, O. When to Use a Distributed Dataflow Engine: Evaluating the Performance of Apache Flink.
In Proceedings of the 2016 Intl IEEE Conferences on Ubiquitous Intelligence Computing, Advanced and Trusted Computing,
Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), Toulouse, France, 18–21 July 2016; pp. 698–705. [CrossRef]

54. Verma, A.; Mansuri, A.H.; Jain, N. Big data management processing with Hadoop MapReduce and spark technology: A
comparison. In Proceedings of the 2016 Symposium on Colossal Data Analysis and Networking (CDAN), Indore, India,
18–19 March 2016; pp. 1–4. [CrossRef]

55. Sang, G.M.; Xu, L.; de Vrieze, P. A reference architecture for big data systems. In Proceedings of the 2016 10th International
Conference on Software Knowledge, Information Management Applications (SKIMA), Chengdu, China, 15–17 December 2016;
pp. 370–375. [CrossRef]

56. Kant, I. Critique of Pure Reason; Penguin Classics: London, UK, 1781.
57. Vergilio, T.; Ramachandran, M.; Mullier, D. Requirements Engineering for Large Scale Big Data Applications. In Software

Engineering in the Era of Cloud Computing; Ramachandran, M., Mahmood, Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2019.
58. Pattinson, C.; Kor, A.L.; Cross, R. Measuring Data Centre Efficiency; Leeds Beckett University: Leeds, UK, 2012.
59. Dubé, L.; Paré, G. Rigor in information systems positivist case research: Current practices, trends, and recommendations. MIS Q.

2003, 27, 597–635. [CrossRef]
60. Vergilio, T.; Ramachandran, M. PaaS-BDP—A Multi-Cloud Architectural Pattern for Big Data Processing on a Platform-as-a-

Service Model. In Proceedings of the 3rd International Conference on Complexity, Future Information Systems and Risk, Funchal,
Portugal, 20–21 March 2018; pp. 45–52. [CrossRef]

61. Kolajo, T.; Daramola, O.; Adebiyi, A. Big data stream analysis: A systematic literature review. J. Big Data 2019, 6, 47. [CrossRef]
62. Ramachandran, M.; Chang, V. Towards performance evaluation of cloud service providers for cloud data security. Int. J. Inf.

Manag. 2016, 36, 618–625. [CrossRef]
63. Ylonen, T. SSH-Secure Login Connections over the Internet. In Proceedings of the 6th USENIX Security Symposium, Focusing on

Applications of Cryptography, San Jose, CA, USA, 22–25 July 1996; Available online: https://ci.nii.ac.jp/naid/10019459981/
(accessed on 10 April 2019).

64. Weave Cloud: Kubernetes Automation for Developers. Weave Cloud. 2019. Available online: https://www.weave.works/
product/cloud/ (accessed on 10 April 2019).

65. Hiroishi, Y.; Fukuda, K.; Tagawa, I.; Iwasaki, H.; Takenoiri, S.; Tanaka, H.; Mutoh, H.; Yoshikawa, N. Future Options for HDD
Storage. IEEE Trans. Magn. 2009, 45, 3816–3822. [CrossRef]

66. ‘State Backends’. Apache Flink 1.3 Documentation. 2017. Available online: https://ci.apache.org/projects/flink/flink-docs-
release-1.3/ops/state_backends.html (accessed on 10 April 2019).

67. Myers, T.; Schonning, N.; King, J.; Stephenson, A.; Gries, W. Data redundancy in Azure Storage. Azure Storage Redundancy.
18 January 2019. Available online: https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy (accessed
on 25 March 2019).

68. Verbitski, A.; Gupta, A.; Saha, D.; Brahmadesam, M.; Gupta, K.; Mittal, R.; Krishnamurthy, S.; Maurice, S.; Kharatishvili, T.; Bao,
X. Amazon Aurora: Design Considerations for High Throughput Cloud-Native Relational Databases. In Proceedings of the 2017
ACM International Conference on Management of Data, Chicago, IL, USA, 14–19 May 2017; pp. 1041–1052. [CrossRef]

69. Paz, J.R.G. Introduction to Azure Cosmos DB. In Microsoft Azure Cosmos DB Revealed: A Multi-Model Database Designed for the
Cloud; Paz, J.R.G., Ed.; Apress: Berkeley, CA, USA, 2018; pp. 1–23. [CrossRef]

70. ‘Datastore–NoSQL Schemaless Database’. Datastore. 2019. Available online: https://cloud.google.com/datastore/ (accessed on
8 June 2019).

https://doi.org/10.1007/978-3-319-16546-2_7
https://doi.org/10.23919/ICITST.2017.8356428
https://doi.org/10.5220/0007695000680080
http://ceur-ws.org/Vol-2062/paper04.pdf
https://doi.org/10.1109/TBDATA.2018.2874469
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0114
https://doi.org/10.1109/CDAN.2016.7570891
https://doi.org/10.1109/SKIMA.2016.7916249
https://doi.org/10.2307/30036550
https://doi.org/10.5220/0006632400450052
https://doi.org/10.1186/s40537-019-0210-7
https://doi.org/10.1016/j.ijinfomgt.2016.03.005
https://ci.nii.ac.jp/naid/10019459981/
https://www.weave.works/product/cloud/
https://www.weave.works/product/cloud/
https://doi.org/10.1109/TMAG.2009.2024879
https://ci.apache.org/projects/flink/flink-docs-release-1.3/ops/state_backends.html
https://ci.apache.org/projects/flink/flink-docs-release-1.3/ops/state_backends.html
https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy
https://doi.org/10.1145/3035918.3056101
https://doi.org/10.1007/978-1-4842-3351-1_1
https://cloud.google.com/datastore/

Appl. Sci. 2023, 13, 12635 67 of 68

71. Yasrab, R.; Gu, N. Multi-cloud PaaS Architecture (MCPA): A Solution to Cloud Lock-in. In Proceedings of the 2016 3rd
International Conference on Information Science and Control Engineering (ICISCE), Beijing, China, 8–10 July 2016; pp. 473–477.
[CrossRef]

72. Ranjan, R. The Cloud Interoperability Challenge. IEEE Cloud Comput. 2014, 1, 20–24. [CrossRef]
73. Poulton, N. Docker Deep Dive; Independently Published: Chicago, IL, USA, 2017.
74. Walli, S. Demystifying the Open Container Initiative (OCI) Specifications. Docker Blog. 19 July 2017. Available online:

https://www.docker.com/blog/demystifying-open-container-initiative-oci-specifications/ (accessed on 8 May 2020).
75. Carter, E. Sysdig 2019 Container Usage Report. Sysdig. 29 October 2019. Available online: https://sysdig.com/blog/sysdig-2019

-container-usage-report/ (accessed on 8 May 2020).
76. Combe, T.; Martin, A.; Pietro, R.D. To Docker or Not to Docker: A Security Perspective. IEEE Cloud Comput. 2016, 3, 54–62.

[CrossRef]
77. Petazzoni, J. GitHub—Software-Defined Networking Tools for LXC (LinuX Containers). 22 August 2017. Available online:

https://github.com/jpetazzo/pipework (accessed on 27 March 2019).
78. Yakubovich, E.; Denham, T. ‘Flannel’. CoreOS. March 2019. Available online: https://github.com/coreos/flannel (accessed on

27 March 2019).
79. Open Virtual Networking with Docker. Open vSwitch Documentation. 2016. Available online: http://docs.openvswitch.org/en/

latest/howto/docker/ (accessed on 27 March 2019).
80. How the Weave Net Docker Network Plugins Work. Weaveworks. 2019. Available online: https://www.weave.works/docs/

net/latest/install/plugin/plugin-how-it-works/ (accessed on 27 March 2019).
81. Dua, R.; Kohli, V.; Konduri, S.K. Learning Docker Networking; Packt Publishing: Birmingham, UK, 2016.
82. Vergilio, T. Multi-Cloud Big Data Processing with Flink, Docker Swarm and Weave Plugin. Weaveworks. 1 August 2018.

Available online: https://www.weave.works/blog/multi-cloud-big-data-processing-with-flink-docker-swarm-and-weave-
plugin (accessed on 15 February 2018).

83. Zismer, A. Performance of Docker Overlay Networks; University of Amsterdam: Amsterdam, The Netherlands, 2016.
84. Production-Grade Container Orchestration. Kubernetes. 2019. Available online: https://kubernetes.io/ (accessed on 27 March

2019).
85. Syed, H.J.; Gani, A.; Nasaruddin, F.H.; Naveed, A.; Ahmed, A.I.A.; Khan, M.K. CloudProcMon: A Non-Intrusive Cloud

Monitoring Framework. IEEE Access 2018, 6, 44591–44606. [CrossRef]
86. Zacheilas, N.; Maroulis, S.; Priovolos, T.; Kalogeraki, V.; Gunopulos, D. Dione: A Framework for Automatic Profiling and Tuning

Big Data Applications. In Proceedings of the 2018 IEEE 34th International Conference on Data Engineering (ICDE), Paris, France,
16–19 April 2018; pp. 1637–1640. [CrossRef]

87. ‘Metrics’. Apache Flink 1.11 Documentation 2020. Available online: https://ci.apache.org/projects/flink/flink-docs-stable/
monitoring/metrics.html (accessed on 27 June 2020).

88. Luzzardi, A. Announcing Swarm 1.0: Production-Ready Clustering at Any Scale. Docker Blog. 3 November 2015. Available
online: https://blog.docker.com/2015/11/swarm-1-0/ (accessed on 8 September 2017).

89. Confluent Control Center. Confluent Platform. 27 June 2020. Available online: https://docs.confluent.io/current/control-center/
index.html (accessed on 27 June 2020).

90. What Is Cloud Pub/Sub? Cloud Pub/Sub Documentation. 15 March 2019. Available online: https://cloud.google.com/pubsub/
docs/overview (accessed on 28 March 2019).

91. Amazon Kinesis Data Streams. 2020. Available online: https://aws.amazon.com/kinesis/data-streams/ (accessed on
10 July 2020).

92. Apache Kafka. The Apache Software Foundation. 2019. Available online: https://github.com/apache/kafka (accessed on
28 March 2019).

93. Vergilio, T. Data-Interpolator. 31 May 2018. Available online: https://bitbucket.org/vergil01/data-interpolator/src/master/
(accessed on 28 June 2020).

94. Vergilio, T. Energy-Consumption-Producer’. 21 September 2018. Available online: https://bitbucket.org/vergil01/energy-
consumption-producer/src/master/ (accessed on 28 June 2020).

95. Vergilio, T. Energy-Consumption-Simulator’. 5 October 2018. Available online: https://bitbucket.org/vergil01/energy-
consumption-simulator/src/master/ (accessed on 28 June 2020).

96. Apache Beam Capability Matrix. 2017. Available online: https://beam.apache.org/documentation/runners/capability-matrix/
(accessed on 9 August 2017).

97. Heitlager, I.; Kuipers, T.; Visser, J. A Practical Model for Measuring Maintainability. In Proceedings of the 6th International
Conference on the Quality of Information and Communications Technology (QUATIC 2007), Lisbon, Portugal, 12–14 September
2007; pp. 30–39. [CrossRef]

98. Bridgmon, K.D.; Martin, W.E. Quantitative and Statistical Research Methods: From Hypothesis to Results: 42, 1st ed.; Jossey-Bass: San
Francisco, CA, USA, 2012.

99. ‘Pods—Kubernetes’. Kubernetes. 12 May 2019. Available online: https://kubernetes.io/docs/concepts/workloads/pods/pod/
#motivation-for-pods (accessed on 8 June 2019).

100. Karabek, M.R.; Kleinert, J.; Pohl, A. Cloud Services for SMEs—Evolution or Revolution? Bus. Innov. 2011, 2, 26–33. [CrossRef]

https://doi.org/10.1109/ICISCE.2016.108
https://doi.org/10.1109/MCC.2014.41
https://www.docker.com/blog/demystifying-open-container-initiative-oci-specifications/
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://doi.org/10.1109/MCC.2016.100
https://github.com/jpetazzo/pipework
https://github.com/coreos/flannel
http://docs.openvswitch.org/en/latest/howto/docker/
http://docs.openvswitch.org/en/latest/howto/docker/
https://www.weave.works/docs/net/latest/install/plugin/plugin-how-it-works/
https://www.weave.works/docs/net/latest/install/plugin/plugin-how-it-works/
https://www.weave.works/blog/multi-cloud-big-data-processing-with-flink-docker-swarm-and-weave-plugin
https://www.weave.works/blog/multi-cloud-big-data-processing-with-flink-docker-swarm-and-weave-plugin
https://kubernetes.io/
https://doi.org/10.1109/ACCESS.2018.2864573
https://doi.org/10.1109/ICDE.2018.00195
https://ci.apache.org/projects/flink/flink-docs-stable/monitoring/metrics.html
https://ci.apache.org/projects/flink/flink-docs-stable/monitoring/metrics.html
https://blog.docker.com/2015/11/swarm-1-0/
https://docs.confluent.io/current/control-center/index.html
https://docs.confluent.io/current/control-center/index.html
https://cloud.google.com/pubsub/docs/overview
https://cloud.google.com/pubsub/docs/overview
https://aws.amazon.com/kinesis/data-streams/
https://github.com/apache/kafka
https://bitbucket.org/vergil01/data-interpolator/src/master/
https://bitbucket.org/vergil01/energy-consumption-producer/src/master/
https://bitbucket.org/vergil01/energy-consumption-producer/src/master/
https://bitbucket.org/vergil01/energy-consumption-simulator/src/master/
https://bitbucket.org/vergil01/energy-consumption-simulator/src/master/
https://beam.apache.org/documentation/runners/capability-matrix/
https://doi.org/10.1109/QUATIC.2007.8
https://kubernetes.io/docs/concepts/workloads/pods/pod/#motivation-for-pods
https://kubernetes.io/docs/concepts/workloads/pods/pod/#motivation-for-pods
https://doi.org/10.1365/s35789-011-0005-4

Appl. Sci. 2023, 13, 12635 68 of 68

101. Hamburg, I.; Marian, M. Learning as a Service—A Cloud-based Approach for SMEs. In Proceedings of the the SERVICE
COMPUTATION 2012, The Fourth International Conferences on Advanced Service Computing, Nice, France, 22–27 July 2012;
pp. 53–57. Available online: https://www.thinkmind.org/index.php?view=article&articleid=service_computation_2012_3_30_10
065 (accessed on 31 July 2020).

102. Oyekola, O.; Xu, L. Selecting SaaS CRM Solution for SMEs. In Proceedings of the ICIST 2020: 10th International Conference on
Information Systems and Technologies, Lecce, Italy, 4–5 June 2020; Available online: http://eprints.bournemouth.ac.uk/33047/
(accessed on 31 July 2020).

103. Martino, B.D. Applications Portability and Services Interoperability among Multiple Clouds. IEEE Cloud Comput. 2014, 1, 74–77.
[CrossRef]

104. Finta, G. Mitigating the Effects of Vendor Lock-in in Edge Cloud Environments with Open-Source Technologies. October 2019.
Available online: https://aaltodoc.aalto.fi:443/handle/123456789/40884 (accessed on 31 July 2020).

105. Cammert, M.; Kramer, J.; Seeger, B.; Vaupel, S. A Cost-Based Approach to Adaptive Resource Management in Data Stream
Systems. IEEE Trans. Knowl. Data Eng. 2008, 20, 230–245. [CrossRef]

106. Li, P.; Guo, S.; Yu, S.; Zhuang, W. Cross-Cloud MapReduce for Big Data. IEEE Trans. Cloud Comput. 2020, 8, 375–386. [CrossRef]
107. Košeleva, N.; Ropaitė, G. Big data in building energy efficiency: Understanding of big data and main challenges. Procedia Eng.

2017, 172, 544–549. [CrossRef]
108. Akidau, T.; Bradshaw, R.; Chambers, C.; Chernyak, S.; Fern, R.J.; Lax, R.; Mcveety, S.; Mills, D.; Perry, F.; Schmidt, E.; et al. The

dataflow model: A practical approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data
processing. Proc. VLDB Endow. 2015, 8, 1792–1803. [CrossRef]

109. Jha, D.N.; Garg, S.; Jayaraman, P.P.; Buyya, R.; Li, Z.; Ranjan, R. A Holistic Evaluation of Docker Containers for Interfering
Microservices. In Proceedings of the 2018 IEEE International Conference on Services Computing (SCC), San Francisco, CA, USA,
2–7 July 2018; pp. 33–40. [CrossRef]

110. Zhao, D.; Mohamed, M.; Ludwig, H. Locality-Aware Scheduling for Containers in Cloud Computing. IEEE Trans. Cloud Comput.
2020, 8, 635–646. [CrossRef]

111. Goedtel, M.; Swathi, D.; Bradley, M.; Wren, B.; Wallace, G. Collect and Analyze Performance Counters in Azure Monitor. Azure
Monitor Documentation. 28 November 2018. Available online: https://docs.microsoft.com/en-us/azure/azure-monitor/
platform/data-sources-performance-counters (accessed on 17 May 2019).

112. Prometheus—Monitoring System & Time Series Database. Prometheus. 2019. Available online: https://prometheus.io/ (accessed
on 17 May 2019).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.thinkmind.org/index.php?view=article&articleid=service_computation_2012_3_30_10065
https://www.thinkmind.org/index.php?view=article&articleid=service_computation_2012_3_30_10065
http://eprints.bournemouth.ac.uk/33047/
https://doi.org/10.1109/MCC.2014.1
https://aaltodoc.aalto.fi:443/handle/123456789/40884
https://doi.org/10.1109/TKDE.2007.190686
https://doi.org/10.1109/TCC.2015.2474385
https://doi.org/10.1016/j.proeng.2017.02.064
https://doi.org/10.14778/2824032.2824076
https://doi.org/10.1109/SCC.2018.00012
https://doi.org/10.1109/TCC.2018.2794344
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/data-sources-performance-counters
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/data-sources-performance-counters
https://prometheus.io/

	Introduction
	Research Context
	Aim and Objectives
	Rationale
	Novel Contribution

	Related Literature Review
	Reference Architectures
	Architectures, Technology Stacks, and Concrete Implementations

	MC-BDP Reference Architecture
	Methods
	Experimental Procedure
	MC-BDP Reference Architecture for Big Data Stream Processing
	MC-BDP Architectural Layers
	The Persistence Layer
	The Node Layer
	The Container Layer
	The Networking Layer
	The Orchestration Layer
	The Service Layer
	The Security Layer
	The Monitoring Layer
	The Messaging Layer

	MC-BDP Prototype Implementation

	MC-BDP Prototype Evaluation
	Experimental Results
	Average Container CPU Utilisation
	Maximum Container CPU Utilisation
	Average Container Memory Utilisation
	Maximum Container Memory Utilisation
	Container Network Utilisation (GB Sent by Workers)
	Container Network Utilisation (GB Received by Workers)
	Container Network Utilisation (GB Sent and Received by the Job Manager)
	Total Records Processed and Data Loss
	Data Ingested

	Conclusions and Future Work
	Recommendations for Future Research
	Limitations of the Study
	Internal Validity
	External Validity
	Construct Validity

	Conclusions

	Appendix A
	Supplementary Tables
	Azure Log Analytics Queries

	References

