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Abstract 
Purpose 

Road traffic emissions are generally believed to contribute immensely to air pollution, but the effect of 

road traffic datasets on air quality predictions has not been fully investigated. This research investigates 

the effects traffic dataset have on the performance of Machine Learning (ML) predictive models in air 

quality prediction. 

Design/methodology/approach 

To achieve this, we have set up an experiment with the control dataset having only the Air Quality (AQ) 

dataset and Meteorological (Met) dataset. While the experimental dataset is made up of the AQ dataset, 

Met dataset, and Traffic dataset. Several ML models (such as Extra Trees Regressor, eXtreme Gradient 

Boosting Regressor, Random Forest Regressor, K-Neighbors Regressor, and two others) were trained, 

tested, and compared on these individual combinations of datasets to predict the volume of PM2.5, PM10, 

NO2, and O3 in the atmosphere at various time of the day. 

Findings 

The result obtained showed that various ML algorithms react differently to the traffic dataset despite 

generally contributing to the performance improvement of all the ML algorithms considered in this study 

by at least 20% and an error reduction of at least 18.97%. 

Research limitations/implications 

This research is limited in terms of the study area and the result cannot be generalized outside of the UK 

as some of the inherent conditions may not be similar elsewhere. Additionally, only the ML algorithms 
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commonly used in literature are considered in this research. Therefore, leaving out a few other ML 

algorithms. 

Practical implications 

This study reinforces the belief that the traffic dataset has a significant effect on improving the 

performance of air pollution ML prediction models. Hence, there is an indication that ML algorithms 

behave differently when trained with a form of traffic dataset in the development of an air quality 

prediction model. This implies that developers and researchers in air quality prediction need to identify 

the ML algorithms that behave in their best interest before implementation. 

Originality/value 

This will enable researchers to focus more on algorithms of benefit when using traffic datasets in air 

quality prediction. 

Keywords: Air-Quality Prediction, Traffic Dataset, Big-Data, Machine Learning 

1 Introduction 
The urban population in the year 2050 is expected to have become 68% of the world population (UN DESA, 

2018). The air quality of major cities around the world would be affected negatively if the forecast comes 

to pass and nothing is done to mitigate its impact on the environment. The World Health Organization 

(WHO) on their part have highlighted the effect of air pollution on various aspect of our lives as it is linked 

to about seven million annual deaths around the world. Additionally, 80% of the urban areas have air 

quality measures that are worse than the WHO guideline (WHO, 2014). The vulnerable group which 

includes children, the elderly, and people with respiratory and cardiovascular problems are the worse hit 

by the degrading air quality situation. Records have shown that in recent years, air pollution accounts for 

1 out of 8 deaths globally (WHO, 2014). This situation emphasises the urgent need for a highly accurate 

air pollution Machine Learning (ML) prediction model. 

The increase in the proportion of pollutants in the form of particles and inhabitable gasses in the 

atmosphere of an area leads to air pollution. Human activities as observed through transportation, 

industry, or domestic activities and sometimes biological or environmental activities such as the case of 

pollutants like ozone (O3), pollen, dust contributes to the composition of the atmosphere that leads to air 

pollution. Even in developing countries, (Owusu-Manu et al., 2020) established air quality as one of the 

eight indicators for measuring green city development. Various air pollutants have been linked to critical 

health challenges such as cardiovascular diseases, pulmonary disease, acute respiratory infection and 

increased risk of lung cancer. The yield of crops has also been affected by the increasing concentration of 

O3 in the atmosphere (Gul & Khan, 2020). Air pollutants such as Nitrogen Dioxide (NO2), Sulphur Dioxide 

(SO2), Ozone are medically proven to irritate the airways of the lungs, increasing the symptoms of those 

suffering from lung diseases. Fine particles (PM2.5 and PM10) always find their way into the lungs to cause 

inflammation and a worse condition of heart and lung diseases. Carbon Monoxide (CO) is believed to 

inhibit the absorption of oxygen by the blood (DEFRA, 2021). These conditions can lead to a shortage of 

oxygen supply to the heart and most likely death.  

(Rybarczyk & Zalakeviciute, 2018) reported research (such Lin et al., 2018; Martınez-Espana et al., 2018; 

Tao et al., 2019; Zhang & Ding, 2017; Zhao et al., 2016) that have reported significant performance gain 

in predicting many of the air pollutants. PM2.5, PM10, NO2 and O3 have been among the major pollutants 

of concern globally as they are linked to various health hazards. The particulate matters (PM) are 

worsening the situation recently and are getting into the limelight. An increase in exposure to air 
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pollutants, (Bowatte et al., 2015; Power Melinda C. et al., 2011) have been able to link the air pollutant 

PM2.5 to the risk of asthma across childhood up to twelve years of age and a decreased cognitive function 

in older men. The magnitude increases with age and the pattern is more prominent with PM2.5. Many of 

these health hazards have been the driving force for governments around the world to redesign policies 

to reduce air pollution and its impact on the environment. Despite government efforts, pollution is yet to 

reduce to a significant low. Hence, the need to be aware of where and when pollution is high. So, 

individuals and organizations can be well equipped to make an informed decision about pollution in their 

respective environments. 

As deterministic models struggle to capture the relationships between variables that affect air pollution, 

several implementations of ML algorithms ranging from the classical ML algorithms such as Support 

Vector Machine (SVM), Linear Regression (LR) and the sophisticated ML algorithms like Deep-Neural 

Network (DNN), and Extreme Machine Learning have been the trend (Iskandaryan et al., 2020; Rybarczyk 

& Zalakeviciute, 2018). In the course of finding an optimally performing air quality ML prediction model, 

researchers have trained ML algorithms on varying combinations of datasets (Masih, 2019). Yet the 

selection of appropriate ML algorithms has been a challenge when using traffic datasets in developing air 

pollution ML prediction models. 

This study aims to investigate the effect of traffic datasets on the performance of various ML algorithms 

used in the development of air pollution ML prediction models. To achieve this, we have selected air 

pollutants PM2.5, PM10, NO2 and O3; these have been reported to have some of the worse impacts on the 

human way of life globally. In the next section, recent literature in ML-based air quality prediction is 

reviewed. This is followed by the methodology section, where we explain the research methodology used 

in this study. The result analysis and discussion section present the outcome of the study. A conclusion of 

the findings of this research is recorded in the conclusion section. 

2 Literature Review 
Several recent research using ML (Alaka et al., 2018; Martınez-Espana et al., 2018; Tao et al., 2019; Zhang 

& Ding, 2017; Hellas et al., 2019; Jiang, 2019; Tu et al., 2020; Mane et al., 2020; Madeiros et al., 2019)  

have shown that deterministic models proved less efficient in the prediction problems in general and 

specifically in air pollution prediction, while ML algorithms are more promising in this domain as reported 

in the literature (Iskandaryan et al., 2020; Rybarczyk & Zalakeviciute, 2018). As seen in our recent study 

(Sulaimon et al., 2021), improved data accessibility in recent years has enhanced the contribution of 

research in the domain of air pollution prediction. Hence, several research efforts with diverse approaches 

have been contributed. The state-of-the-art research in air pollution prediction using ML is summarized 

in Table 1. This explains a lot about the trend in the domain as there are several datasets used in the 

prediction of air pollution, researchers find Air Quality data and Meteorological data more useful. This has 

to some extent limit the performance of air pollution ML prediction models.  

2.1 Systematic Literature Review Process 
As with literature review studies (such as Alaka et al., 2018; Rybarczyk & Zalakeviciute, 2018; Egwim et al., 
2021), we conducted a systematic review of the state-of-the-art research in this domain. The literature 
review is conducted to reveal the trends and assumptions in using traffic datasets in the development of 
air quality prediction models. 

 We searched the SCOPUS database using the search keyword- (“air pollution” OR “air quality” OR 
“atmospheric pollution” OR “air pollutant”) AND (prediction OR forecast OR forecasting OR predict OR 
predicting) AND (“machine learning” OR ml OR “predictive model” OR modelling OR algorithm OR “big 
data” OR bigdata OR “artificial intelligence” OR ai). The keyword was developed through similar studies 
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and common keywords in the domain, while the choice of the SCOPUS database is based on the benefits 
it offered by the unification of research globally and providing a comprehensive and wide range of 
scholarly information.  

The search returned 49 relevant research articles between January 2007 and June 2021. The research 

articles were further screened using the following selection criterion: 

 Publication must be published between the 1st of January 2000 and the 30th of May 2021. 

 Publication must report on the use of ML models or algorithms in the prediction of air pollution. 

 Publication must involve an empirical study to analyze the performance of the approach used and 

the result obtained. 

 If some publications reported the same empirical studies, the most recent will be selected. 

Research articles are excluded if: 

 They do not meet the selection criterion, if  

 They performed only a Systematic Literature Review, Systematic Mapping Study or General 

Literature Review. 

 They do not conduct an empirical study.  

 The full text is not available. 

 They are written in languages other than English and without a translation to English.  

 They are grey literature (such as technical papers, government reports, policy statements and 

issues papers, conference proceedings, pre-prints and post-prints of articles, theses and 

dissertations, research reports, geological and geophysical surveys, maps, newsletters and 

bulletins, fact sheets). 

 

The 49 research articles discovered through our search were put to further scrutiny to ensure only quality 

research are included in the study. Our literature search flow diagram in Figure 3 shows that the literature 
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identification stage ended up with 48 research articles as one of the articles is a duplicate. Hence, a copy 

of the article from the most reliable source is included for the study. At the screening stage, 18 articles 

are excluded after screening the abstract and ensuring that the selected articles were published within 

the defined period between 2017 and 2021. Despite the titles of some of the articles being related to our 

study, the abstract reflects that their objectives are very different from that of our study. While some 

other articles have no full text available for further study. Therefore, 30 research articles are remaining 

for the full-text analysis (eligibility) stage. The full-text analysis reveals that four of the articles deviate 

from the objective of our research, as one does not report the pollutants of focus, the other involved only 

a simulation study and the last two does not involve air pollution prediction. 

Finally, only 26 of the research articles are selected for review, as they fulfil the selection criteria, and are 

the most recent in the domain as they were published between 2017 and 2021. The unselected articles 

either are out of scope, duplicates or have inaccessible full text. These primary study articles are further 

reviewed for data extraction, data synthesis and data analysis. A full report of the systematic review and 

result is found in (Sulaimon et al., 2021). 

2.2 State-of-the-art in Air Quality Prediction 
There are many pollutants of focus in air quality prediction using ML, but only six of them are the most 
common pollutants (PM2.5, PM10, O3, NO2, SO2, CO) among many research studies (Table 1, in appendix). 
This is partly due to the presence of these pollutants in almost everywhere there are human activities, 
while the rarely focused pollutants are found in the atmosphere of specific areas such as the insides of 
mines, tunnels and factories. Additionally, there are diverse combinations of datasets for the prediction 
of these air pollutants. The commonly used datasets are the Air Quality dataset and the Meteorological 
dataset. Most of the literature has a form of Air Quality dataset in their dataset collection used for air 
pollutant prediction. Despite the diversity observed in the choices for ML algorithms, Random Forest 
appears to be the most common choice of many researchers. 

Not until recently have researchers started to use different forms of traffic datasets in air quality forecasts. 
This has been due to the recent availability of traffic datasets and the inherent belief induced through 
traffic emission modelling that simulate how traffic emission contributes to air pollution. Many studies 
like (Comert et al., 2020; Hatzopoulou et al., 2013; Pinto et al., 2020; Rossi et al., 2020) have supported 
the theory that traffic emission contributes to air pollution. This has caused several studies such as 

(Ashayeri et al., 2021; Rossi et al., 2019a; Rossi et al., 2020) in the domain of air quality forecast to use 
various forms of traffic datasets for prediction model development. Whereas, there is no significant 
research that proves the impact of traffic datasets on the performance of air quality ML prediction models. 
It is obvious in Table 1 (see appendix) that the performance measure reported in research that uses traffic 
datasets are not significantly better than the others, and it has not been verified if the traffic datasets are 
the contributors to the performance recorded. In addition, research reported does not use the same 
datasets, combination of datasets, methodologies nor ML algorithms. Hence, the results are not 
comparable to prove the assumption on how traffic datasets influence the predictive performance of air 
quality ML prediction models. 

As traffic-related air pollution is a major contributor to air pollution as evident in traffic emission 

dispersion modelling, traffic data is believed to enable a dataset with high granularity and an ML predictive 

model with better performance. Hence, we verify through an experimental approach how traffic dataset 

influences the performance of ML algorithms in the development of air quality ML prediction models. 
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3 Methodology 
Deterministic models have proved less efficient in the prediction of air pollutants (Iskandaryan et al., 2020; 

Liao et al., 2021), this research applies ML in the development of an air pollution ML prediction model. 

Hence, we implemented the full length of the ML pipeline, starting from Data preprocessing, Algorithm 

selection, Model training/validation/testing, Model evaluation.  

As presented in Figure-1, the research begins with a systematic review of the state-of-the-art in air quality 

prediction. Simultaneously, data collection is ongoing to gather a sufficient amount of Air Quality dataset, 

Meteorological (Weather) dataset and Traffic dataset as needed. This is followed by the ML pipeline to 

develop the air quality prediction model. At the end of the air quality model development, the models are 

evaluated, results of the evaluations are analysed for comparison between models. The developed models 

are then prepared ready for use while a conclusion and recommendation are recorded. 
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Figure 1: Research Methodology Block-Diagram 

 

3.1 Study area 
The study area for this research is the United Kingdom (UK), which is comprised of England, Wales, 

Scotland and Northern Ireland. The UK is the 21st most populated country in the world with a population 

of 68.2 million and a population density of 259 people per square kilometre. The predominantly urban 

and suburban England's southeast region houses about a third of the population of the UK (KS3 Geography 

Revision, 2021). This explains the higher density of dataset collection sites in the southeastern part of 

England as seen in Figure-2. 



8 
 

 

Figure 2: 338 Data Collection site across the United Kingdom 

Data was collected from 338 different locations across the UK as shown in the identified location on the 

map in Figure-2. The data collected is made up of 11,322,240 data points of the Air Quality dataset, 

Meteorological dataset and Traffic dataset. 

3.2 Data 
In the process of applying ML to solving a problem, the availability of data, the volume and quality of the 

available data are important metrics to be considered. To ensure an optimal combination of high-quality 

dataset and selection of features, we documented and review all the stages of Data collection, Data 

merging, Data preprocessing, Data visualization and analysis, Feature selection. 

3.2.1 Data collection 
The Internet-of-Things (IoT) has simplified the process of data collection and monitoring in many fields 

(Arowoiya et al., 2020; Gamil et al., 2020). The data collection process for this research was conducted 

using IoT-based sensors within the 338 data collection sites selected within the UK. This was done with a 

focus on ensuring high granularity and accuracy of our model prediction. Therefore, the datasets collected 

include the meteorological (weather) dataset, air quality dataset and traffic dataset for 338 postcodes 

spread around the UK. For this research, we used a dataset for the 6 months starting from 01:00 am, 1st 

of December 2020, till 00:00 1st of June 2021.  The period was selected as it falls within the period when 
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the covid-19 lockdown was eased in the UK. Additionally, it enables capturing datasets for multiple 

seasons with variable weather conditions. 

Air Quality Data: The advent of IoT-based technology has made the recording of Air Quality (AQ) data 
easier. The air quality data used in this research is sourced via the 338 IoT sensors stationed across the 
UK. The sensors record hourly data for several pollutants (such as NO2, PM10, SO2, FINE, O3, PM1, PM2.5, 
TSP, CO, NO). Each of the sensors does not record readings for all the pollutants. Hence, the recordings 
for various pollutants were collated from several sensors. The Air Quality Data is recorded hourly by each 
of the 338 sensors and stored using the AWS Document DB that supports MongoDB. A description of the 
air quality dataset is seen in Table 2 (see appendix) 

Meteorological Data: The recording of the meteorological (Met) data was conducted for each of the data 
collection sites selected in the UK. This data was sourced via the Open Weather Map API 
(OpenWeatherMap, 2021). A JSON format object is used for the API response, while the data is extracted 
and stored on the Amazon Web Service (AWS) S3 bucket to ease accessibility. Table 3 (in appendix) 
contains a brief description of the meteorological (weather) dataset. 

Traffic Data: The process of getting the traffic data has been challenging, as several traffic data sources 
do not have it readily available while many of the sources do not have the data recorded hourly nor at the 
level of granularity needed. Hence, for this research, we sourced traffic data from TomTom traffic flow 
API (Tom Tom, 2021). The traffic data is collected at 15 minutes intervals, but it is further analysed and 
processed to derive an hourly average of every day of the week. This process involves the elimination of 
the data recorded for the period immediately after the COVID-19 lockdown was eased in the UK (between 
the 8th of March 2021 and the 22nd of March 2021). The purpose of the data elimination was due to the 
irregular spike in the traffic situation across the UK roads during the stated period. The distortion 
introduced into the data is eliminated through the observed procedure. A summary of the traffic dataset 
is presented in Table 4 (in appendix). 

3.2.2 Data preprocessing 
The data preprocessing phase of the ML pipeline is a need-based process. Hence, we performed the 

preprocessing needed for the datasets available for the research. Due to the large size of the dataset used 

in this research, the dataset is stored and processed as big data. The dataset is stored using the Amazon 

Web Service (AWS) S3 bucket and the AWS DocumentDB. This allows for flexibility in processing the data 

via the AWS cloud. 

Data merging: Using multiple datasets require the process of data merging to ensure that the required 
data can be sourced from a unified repository. The three datasets used for this research were processed 
and merged using the Pandas package in the Python programming language. The data were merged using 
their common feature of Location (Latitude, Longitude), Date and Time. 

Data   Refinement: The refinement applied to the data includes the process of cleaning the data of outliers 
and treating the missing data. The records with missing pollutants values are eliminated to avoid 
ambiguity in the data modelling phase and the model training and testing phase. 

Data  Transformation: All the features of the dataset are transformed into numerical and float data types. 
This is to enable easy computation.  

3.2.3 Feature selection 
In selecting the features to be used for training the model, we ensured that only the important features 

of the dataset are selected. The Air Quality, Meteorological and Traffic datasets consists of numerous 

features that are not related to the study. Hence, these features are removed from the dataset for the 

training process. Table 5 describes the selected features of the dataset after it has been merged. The 
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Location (Latitude, Longitude), Date and Time features of the dataset are used only to merge the dataset. 

These features were removed before the dataset is used in the ML pipeline. The correlation analysis that 

guides the feature selection process of the dataset is presented in Figure-3. 

Table 1: Selected variables for model development 

Data Features Unit Type 

Location Latitude   

Longitude   

Date Date   

Time Time Hour  

Meteorological Absolute Temperature oc Independent 

Feels-Like oc 

Pressure Hg 

Humidity % 

Minimum Temperature oF 

Maximum Temperature oF 

Wind Speed km/h 

Wind Degree degree 

Cloud okta 

Rainfall mm 

Traffic Current Travel Speed km/h 

Free Flow Travel Speed km/h 

The ratio of Current Travel 
Speed and Free Flow Travel 
Speed 

 

Current Travel Time Seconds 

Free Flow Travel Time Seconds 

The ratio of Current Travel Time 
and Free Flow Travel Time 

 

Data Confidence  

Road Closure 0,1,2,3,4 

Air Quality PM2.5 µg/m3 Dependent 

PM10 µg/m3 

NO2 µg/m3 

O3 µg/m3 
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Figure 3: Correlation analysis of all features 

This has informed the selection of features of the dataset that have the least correlations and are of most concern to this research as seen in Table 5 (of 

the appendix). 
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dt 1

time -0.00478 1

latitude 0.079973 -0.00278 1

longitude -0.10805 0.000447 -0.10048 1

temp 0.452662 0.195827 0.050471 -0.0362 1

feels_like 0.415282 0.150038 0.007032 -0.05279 0.939485 1

pressure 0.231938 0.000952 0.000281 0.007277 -0.07154 -0.0386 1

humidity -0.42899 -0.23544 -0.18157 -0.05178 -0.39882 -0.23316 -0.24895 1

temp_min 0.432534 0.197139 0.051573 -0.03494 0.993793 0.930312 -0.09251 -0.38129 1

temp_max 0.46607 0.194072 0.05116 -0.03752 0.993916 0.936317 -0.05171 -0.41203 0.978927 1

speed 0.074717 0.10358 0.082239 0.025655 0.261903 -0.06934 -0.19772 -0.2598 0.275844 0.247251 1

deg -0.02747 0.026951 -0.01315 0.004772 0.076247 0.023591 -0.13537 -0.04217 0.080834 0.06929 0.160389 1

all -0.17988 -0.03165 0.032547 0.042967 -0.04966 -0.04558 -0.16807 0.212688 -0.02421 -0.07371 0.051309 -0.05099 1

id 0.084114 -0.00217 -0.00246 -0.00137 0.028881 0.046736 0.205943 -0.20517 0.02057 0.03724 -0.1175 0.076572 -0.19087 1

NO2 -0.05719 0.141471 0.11888 -0.03962 -0.06383 0.012333 0.078093 0.024251 -0.07904 -0.04841 -0.24645 -0.02219 -0.09928 0.036857 1

PM10 0.061808 0.044709 0.010449 0.101569 0.04386 0.073851 0.158654 -0.06823 0.033661 0.053066 -0.10792 -0.06099 -0.0882 0.068387 0.238972 1

SO2 -0.04535 0.001331 0.026016 -0.00755 -0.00561 -0.0057 -0.05035 0.012396 -0.00426 -0.00594 0.002333 0.004995 0.015777 -0.00937 0.00438 -0.05388 1

FINE -0.06456 -0.00108 0.067836 0.091804 -0.04639 -0.03355 0.03214 0.013062 -0.04852 -0.04271 -0.04637 -0.0293 0.023734 0.004821 0.040046 0.198131 -0.01513 1

O3 0.11451 0.014584 -0.04539 -0.02902 0.11264 0.078789 -0.00414 -0.09122 0.116795 0.109015 0.099902 0.019779 -0.0223 0.00015 -0.14976 -0.07781 0.078908 0.048109 1

PM1 -0.04682 -0.00966 0.03155 0.013663 -0.05345 -0.03797 0.020281 0.039963 -0.05356 -0.05147 -0.04735 -0.02461 0.023868 -0.00719 -0.05849 0.121657 -0.00785 0.703106 0.030897 1

PM25 0.033517 0.002396 0.094213 0.083863 -0.00969 0.01263 0.071973 0.008567 -0.0139 -0.00415 -0.07014 -0.0421 -0.02391 0.013236 0.042096 0.153753 -0.01591 0.207258 0.071842 0.366353 1

TSP -0.08343 -0.00286 0.034653 0.013223 -0.05263 -0.04245 0.007171 0.035999 -0.05122 -0.05201 -0.03201 -0.01112 0.031485 -0.00041 -0.06602 0.097702 -0.00823 0.629621 0.022531 0.841118 0.313303 1

CO -0.06301 0.005144 0.028409 -0.01886 -0.02495 -0.02057 -0.01724 0.022937 -0.02421 -0.02461 -0.01147 0.001513 0.014495 -0.00291 0.01812 -0.06873 0.671316 -0.01729 0.0802 -0.00897 -0.0286 -0.00941 1

NO -0.02366 0.015546 -0.13169 -0.15945 -0.00953 0.002009 0.005531 0.050084 -0.01072 -0.00909 -0.0211 0.007265 -0.00028 0.00348 0.04893 0.009599 -0.00505 -0.01932 -0.03459 -0.01002 0.058066 -0.01052 -0.00577 1

AQI 0.66057 0.014591 0.062983 -0.10376 0.37197 0.354294 0.079311 -0.35968 0.351986 0.387428 0.014522 -0.03149 -0.17865 0.058483 0.018225 0.130784 -0.0192 -0.01897 0.2534 -0.01996 0.060092 -0.07293 -0.03529 -0.01762 1

lat 0.079973 -0.00278 1 -0.10048 0.050471 0.007032 0.000281 -0.18157 0.051573 0.05116 0.082239 -0.01315 0.032546 -0.00246 0.11888 0.010449 0.026016 0.067837 -0.04539 0.031551 0.094214 0.034654 0.028409 -0.13169 0.062983 1

long -0.10805 0.000447 -0.10048 1 -0.0362 -0.05279 0.007278 -0.05178 -0.03494 -0.03752 0.025654 0.004772 0.042967 -0.00137 -0.03962 0.101569 -0.00755 0.091803 -0.02902 0.013664 0.083863 0.013224 -0.01886 -0.15945 -0.10376 -0.10048 1

 currentSpeed -0.01388 -0.10228 -0.21402 0.010477 -0.09935 -0.07235 -0.01812 0.148848 -0.09755 -0.10084 -0.05494 0.000877 -0.06674 -0.01575 -0.1135 -0.05881 -0.05712 -0.10966 0.106821 -0.07928 -0.00025 -0.0894 -0.06719 -0.00955 0.001332 -0.21402 0.010475383 1

 freeFlowSpeed -0.01787 0.003288 -0.19358 0.011625 -0.03659 -0.0256 -0.02067 0.082318 -0.03468 -0.03886 -0.01553 0.013135 -0.07227 -0.0174 -0.0225 -0.03393 -0.03031 -0.12449 0.102309 -0.0807 -0.01018 -0.08644 -0.02971 -0.01512 0.001933 -0.19358 0.01162256 0.906084588 1

 current_freeFlowSpeed 0.003143 -0.26277 -0.11843 0.006099 -0.16827 -0.1232 -0.00217 0.200637 -0.16747 -0.16766 -0.10551 -0.0228 -0.01241 -0.00324 -0.22078 -0.06698 -0.08669 -0.02923 0.019503 -0.03759 0.012753 -0.05371 -0.11402 0.01222 -0.0047 -0.11843 0.006098806 0.548737422 0.1681023 1

 currentTravelTime -0.00664 0.142388 0.065007 0.009381 0.082901 0.05928 0.009782 -0.11226 0.081458 0.082237 0.051434 0.009081 -0.00254 0.00085 0.01179 0.049588 0.101893 0.07918 -0.00774 0.040855 -0.0478 0.05438 0.142659 -0.01912 -0.00251 0.065006 0.009379445 -0.347165635 -0.108488812 -0.591637204 1

 freeFlowTravelTime -0.00591 -0.00281 0.000851 0.046051 -0.01215 -0.01096 0.012621 -0.00927 -0.01427 -0.01242 -0.00925 -0.00813 -0.00857 -0.00094 -0.15437 0.007156 0.02239 0.080429 0.009211 0.018627 -0.06814 0.017681 0.035237 -0.0119 -0.0101 0.000852 0.046049864 -0.060116772 -0.090146559 0.059039576 0.663063189 1

 freeFlow_currentTravelTime 0.003161 -0.26311 -0.11887 0.006501 -0.16831 -0.12316 -0.0021 0.200852 -0.16752 -0.1677 -0.10571 -0.02276 -0.01263 -0.00333 -0.22114 -0.06729 -0.08597 -0.02896 0.019302 -0.03667 0.012223 -0.05284 -0.11331 0.011771 -0.00454 -0.11887 0.00650058 0.54910897 0.168510412 0.99970422 -0.588304078 0.061870946 1

 confidence -0.00248 0.304772 0.061899 -0.01102 0.114413 0.083498 -0.00096 -0.13434 0.116125 0.112477 0.075443 0.005115 -0.00741 -0.00043 0.16234 -0.00022 0.01741 -0.01201 0.006403 0.038755 0.11922 0.043847 0.02418 0.021081 0.002111 0.061897 -0.011021009 0.022304903 0.134451759 -0.231315937 0.047797999 -0.137098075 -0.231684508 1

 roadClosure -0.00188 0.001021 0.051869 -0.00225 0.014795 0.005311 0.004721 -0.03517 0.014819 0.015705 0.020692 -0.00211 0.01456 0.003974 -0.00453 0.06441 -0.00873 0.008598 -0.0147 -0.01729 -0.05381 -0.01813 -0.00997 -0.01114 0.004163 0.05187 -0.002248623 -0.214683355 -0.270899711 -0.062244425 -0.038752124 -0.025918183 -0.05946951 -0.14787918 1
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3.3 Algorithm selection 
The approach to this study is to use ML regressor algorithms for the development of the ML prediction 

model. Hence, we trained 40 ML regressor algorithms and report the top six models based on their 

performance recorded using the performance metrics stated. The reported algorithms are Extra Trees 

Regressor, Histogram-Based Gradient Boosting Regressor, Light Gradient Boosted Machine (LGBM) 

Regressor, eXtreme Gradient Boosting (XGB) Regressor, Random Forest Regressor, Bagging Regressor, 

Gradient Boosting Regressor, K-Neighbors Regressor (KNN), Multi-Layer Perceptron (MLP) Regressor. 

These ML algorithms are trained on the merged datasets using their default hyper-parameters to ensure 

a fair comparison of the performance of the algorithms. 

3.4 Performance metrics 
The choice of performance metrics in evaluating the predictive models is based on the commonly used 

performance metrics found in related literature. This will enable easy comparison of our results with the 

state-of-the-art benchmarks. Many of the literature reported in reviews (such as Iskandaryan et al., 2020; 

Rybarczyk & Zalakeviciute, 2018) evaluate their predictive models using R-Squared (R2), Root Mean 

Squared Error (RMSE) and Mean Absolute Error (MAE). Hence, these two measures of performance are 

selected as the performance metrics for this study. 

3.4.1 R-Squared (R2) score 
The performance score R2 shows the degree to which the data fit the model. It is used to determine the 
proportion of the variance in the dependent variable(s) that is justifiable by the independent variables. 
The best R2 score is 1.0, but the value of R2 can range from negative values. When the value of R2 is 
negative, it explains that the fit of the variance is worse than just fitting a horizontal line. The R2 is defined 
in equation 1: 

 

                                                        𝑅2 =  1 −
∑ (𝑦𝑝𝑟𝑒𝑑,𝑖−𝑦𝑑𝑎𝑡𝑎,𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑑𝑎𝑡𝑎,𝑖−𝑦𝑑𝑎𝑡𝑎)
2𝑛

𝑖=1

                                          (1) 

Where 
 𝑦𝑝𝑟𝑒𝑑,𝑖 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 

𝑦𝑑𝑎𝑡𝑎,𝑖 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑦𝑑𝑎𝑡𝑎 = 𝑀𝑒𝑎𝑛 𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒n = Number of data objects 

 

 

 

3.4.2 Root Mean Squared Error (RMSE) 
The RMSE is the root of the Mean Squared Error (MSE). Hence, it is the root of the variances between the 

predicted value and the actual value. As a measure of error, the value of RMSE ranges between 0 and 1. 

While the lower the value, the better the performance of the model. The RMSE is formulated as seen in 

equation 2. 

                                                              𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝐴𝐸𝑖 − 𝑃𝐸𝑖)2𝑛

𝑖=1                                                 (2) 

Where 
 𝐴𝐸𝑖 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 

𝑃𝐸𝑖 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 

n = Number of data objects 
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3.4.3 Mean Absolute Error (MAE)  
Mean Absolute Error (MAE) computes the variation between the predicted values and true or actual 

values. MAE scores close to zero indicates better performance while a score greater than zero signifies a 

bad performance. Unlike RMSE, MAE is not sensitive to outliers (Hyndman & Koehler, 2006). 

                                                    𝑀𝐴𝐸 =  
1

𝑛
∑ |𝐴𝐸𝑖 − 𝑃𝐸𝑖|𝑛

𝑖=1                                  (3) 

Where 
 𝐴𝐸𝑖 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 

𝑃𝐸𝑖 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 

n = Number of data objects 

 

3.5 Design of Experiments 
We designed the experiment to have the control and the experiment. The control group ML models of 

the experiment are designed to be trained on the merged Air Quality dataset and Meteorological dataset. 

While the Experimental group of the ML models are developed using the merged dataset consisting of the 

Air Quality dataset, Meteorological dataset and Traffic dataset (Table 6, in appendix). 

Table 2: Experiment design 

Study Dataset 

Control AQ, Met dataset 

Experiment AQ, Met, Traffic dataset 

 

The design of the experiment as summarized in Figure-4 is made up of four phases- Data collection, Data 

preparation, Model development and Model evaluation. Aside from the first phase of Data collection, 

every other phase is similar for each of the control and the experiment.  

 

Figure 4: Design of the Experiment 
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3.5.1 Experimental setup 
The experiment was conducted using Python programming language 3.6.8 (van Rossum & Drake, 1995) 

with the support of the Scikit-Learn Python Package (Pedregosa et al., 2012). The computation was 

performed using Apple MacBook Air with BigSur OS version 11.3 and an M1 processor with 16GB RAM. 

This configuration is in no way believed to impact the performance of the predictive models developed. 

3.6 Model development 
Following the experiment procedure, the model development stage is divided into two similar procedures 

for the control-dataset and the experimental-dataset respectively. The only difference between the two 

procedures is the dataset used in developing the predictive models (Figure 2). The models were developed 

to predict the independent variables (PM2.5, PM10, NO2 and O3) for each of the 338 locations at the various 

hour of the day. 

For each of the experiment procedures, the dataset is randomly divided into a training dataset and a test 

dataset. 70% of the dataset is used for the training and validation, while the other 30% is used as the test 

dataset.  

3.6.1 Training and validation 
In the training phase of the ML pipeline, the selected ML algorithms are trained on the training dataset. 

Each of the algorithms is trained one after the other to ensure that the training process for each algorithm 

does not interfere in any way with the others. 

The validation process is necessary while training the algorithm to ensure that the models improve in 

performance while undergoing training. Hence, the 10-fold cross-validation was done to ensure that the 

performance of the trained model is accurately recorded, and the model is well fitted. 

3.6.2 Testing 
For the performance evaluation purpose, testing the trained model is a vital step. The trained models are 

tested using the test dataset as provided from the main dataset. Here, the predictive models are used to 

predict the values of the dependent variable. These predictions are compared with the real value and the 

differences are recorded to be used for computing the evaluation metrics. 

4 Result evaluation and discussion 
Evaluating the model is based on the performance metrics used for the evaluation. The R2 and RMSE have 

been selected to be used in this research due to their popularity in the research domain.  

4.1 Evaluation 
The evaluation process was conducted by using the predictive models to predict the dependent variables 

of the test data. The prediction is compared with the true values and used to derive the values of the 

performance metrics. This procedure is applied on each of the air pollutants of focus and recorded as 

presented below respectively. 

4.1.1 PM2.5  
Table 7 presents the calculated R2 score, RMSE and MAE for the predictive models trained on the control 

dataset and experimental dataset of PM2.5. With a 20.81% increase in the performance recorded for the 

Bagging regressor when trained with the experiment dataset, the trend noticed for the performance boost 

of PM2.5 prediction models appears interesting. The Bagging regressor is not the best performing 

algorithm in this category, but it displays the most performance boost (20.81%) when it is trained with 
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the dataset that contains the traffic dataset. While the Random Forest Regressor had the largest 

percentage error reduction (18.97%) when trained experiment dataset. 

Table 3: Performance of PM2.5 Models 

Model Control Experiment % Difference 

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

Extra Trees 
Regressor 

0.6221 4.8191 3.0167 0.7356 4.0311 2.4445 18.24 16.35 18.97 

Random Forest 
Regressor 

0.6214 4.8236 3.0580 0.7370 4.0199 2.5098 18.61 16.66 17.93 

XGB Regressor 0.6048 4.9281 3.2270 0.7218 4.1349 2.6752 19.34 16.10 17.10 

Histogram Gradient 
Boosting Regressor 

0.5906 5.0158 3.3309 0.7005 4.2897 2.8068 18.62 14.48 15.73 

LGBM Regressor 0.5898 5.0205 3.3367 0.6979 4.3086 2.8112 18.32 14.18 15.75 

Bagging Regressor 0.5892 5.0243 3.1718 0.7118 4.2083 2.6199 20.81 16.24 17.40 

 

4.1.2 PM10  
The calculated R2 score, RMSE and MAE as recorded in Table 8 shows the performance for the predictive 

models trained on the control dataset and experimental dataset of PM10. In the prediction of PM10, the 

Extra Trees regressor records the best performance boost of 70% when measured using the R2. Based on 

the MAE score, 27.77% is the largest error reduction recorded, and this is obtained by the Random Forest 

regressor. This is to reinforce the point that the best performing algorithm does not necessarily record 

the best improvement when the traffic dataset is added to the training dataset. 

Table 4: Performance of PM10 Models 

Model Control Experiment % Difference 

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

LGBM Regressor 0.4140 9.8203 6.2937 0.6788 7.2707 4.9348 63.95 25.96 18.97 

Histogram Gradient 
Boosting Regressor 

0.4134 9.8255 6.2923 0.6728 7.3387 4.9527 62.74 25.31 21.29 

XGB Regressor 0.4110 9.8455 6.1002 0.6866 7.1815 4.6899 67.06 27.06 23.12 

Random Forest 
Regressor 

0.4021 9.9199 6.1163 0.6629 7.4487 4.4178 64.86 24.91 27.77 

Extra Trees 
Regressor 

0.3846 10.0639 6.1727 0.6538 7.5483 4.4822 70.00 25.00 27.39 

Bagging Regressor 0.3818 10.0863 6.2878 0.6336 7.7654 4.6895 20.81 16.24 17.40 

 

4.1.3 NO2  
Like other pollutants reported in this study, the performance metrics for the predictive models recorded 

for NO2 in the control and experimental dataset are slightly different. The calculated R2 score and RMSE 

for the models trained on the control dataset and experimental dataset of NO2 are recorded in Table 9 

below. In a similar trend with other prediction models, the Extra Trees regressor reported the best 

performance in both the control dataset and the experiment dataset. Whereas the Extra Trees regressor 

which is an ensemble of many decision trees shows the largest performance increase of 46.82% and error 

reduction of 31.13% as recorded by the R2 and MAE respectively. 
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Table 5: Performance of NO2 Models 

Model Control Experiment % Difference 

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

XGB Regressor 0.5266 12.8396 9.4102 0.7407 9.5023 6.6886 40.67 25.99 28.92 

Random Forest 
Regressor 

0.5242 12.8715 9.3416 0.7191 9.8906 6.6648 37.17 23.16 28.66 

LGBM Regressor 0.5007 13.1855 9.8240 0.7053 10.1301 7.2517 40.86 23.17 26.18 

Bagging Regressor 0.5002 13.1914 9.5231 0.6866 10.4458 7.0351 37.26 20.81 26.13 

Histogram Gradient 
Boosting Regressor 

0.4967 13.2375 9.8343 0.6961 10.2868 7.3742 40.13 22.29 25.02 

Extra Trees 
Regressor 

0.4937 13.2773 9.5058 0.7249 9.7881 6.5467 46.82 26.28 31.13 

 

4.1.4 O3  
The performance metrics recorded for O3 predictive models using R2 score, RMSE and MAE are presented 

in Table 10. As with other predictive models in this study, the models are trained on the control dataset 

and experimental dataset of O3, and the performance metrics are measured and recorded. The Extra Tree 

regressor consistently records the best performance boost and the best error reduction in the experiment. 

Table 6: Performance of O3 Models 

Model Control Experiment % Difference 

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

Random Forest 
Regressor 

0.5305 12.8737 9.4958 0.7415 9.5518 6.5092 39.78 25.80 31.45 

LGBM Regressor 0.4981 13.3106 9.9812 0.6984 10.3189 7.4043 40.21 22.48 25.82 

Extra Trees 
Regressor 

0.4972 13.3225 9.6159 0.7718 8.9760 5.8974 55.22 32.63 38.67 

Histogram Gradient 
Boosting Regressor 

0.4942 13.3621 10.026
6 

0.6988 10.3111 7.4107 41.40 22.83 26.09 

XGB Regressor 0.4942 13.3627 9.8844 0.7128 10.0690 7.0702 44.24 24.65 28.47 

Bagging Regressor 0.4921 13.3906 9.8410 0.7034 10.2316 6.9975 42.96 23.59 28.90 

 

4.2 Discussion 
Traffic data has been in use in vehicle emission modelling for a long time as proven in (Comert et al., 2020; 

Hatzopoulou et al., 2013; Pinto et al., 2020; Rossi et al., 2020) and similar studies. The impact of traffic 

data on air quality ML prediction models has been assumed in several studies such as (Ashayeri et al., 

2021; Rossi et al., 2019a; Rossi et al., 2020), where it is undoubtedly believed that traffic pollution 

contributes immensely to air pollution. This alone is not enough to explain how the traffic dataset 

influences the performance of air quality ML prediction models. 

Observing the R2 and RMSE performance metrics recorded for each of the pollutants PM2.5, PM10, NO2 and 

O3, the performance measured for each of the predictive models consistently indicates that the models 

trained on the control dataset perform worse than the models trained on the experimental datasets. As 
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presented in Figure 5a, Extra Trees Regressor has the best performance recorded for PM2.5 prediction 

models trained with the control dataset. Whereas it does not seem to perform much better with the 

experiment dataset. The Random Forest Regressor display a relatively outstanding performance boost 

when trained with the experimental dataset (Figure 5b). PM10 prediction models have similar behaviour 

to that of PM2.5 prediction models, despite the variation in best-performing algorithms. The performance 

boost obtained in the PM10 experiment as presented in Figure 3d is significant when compared with the 

performance shown in Figure 3c which is obtained when the models are trained with the control dataset. 

Here, LGBM Regressor is best performing on the control dataset while the XGB Regressor obtained the 

best performance as measured for models trained with the experiment dataset. The prediction 

comparison presented in Figures 5e and 5f shows a consistent performance boost noticed for NO2. XGB 

Regressor models obtained the best performance when trained with the control dataset, a relative boost 

in performance is also obtained when trained with the experiment dataset. As with PM2.5 and PM10, a 

significant boost in performance is obtained for O3 models trained with the experiment dataset. Random 

forest Regressor obtained the best performance among models trained with the control dataset while the 

performance recorded for the experiment dataset is not significant enough to be the best performing 

model in this category (Figures 5g and 5h). The Random Forest Regressor is outperformed by the Extra 

Trees Regressor among the models trained with the experiment dataset.  

Although the best-performing algorithms varies generally for each case, it is of immense benefit to have 

a performance gain in the air quality ML prediction models regardless of the algorithms used. This 

indicates that there is no one-size-fits-all situation to the best performing ML algorithms for building an 

air quality ML prediction model. There is limited research in the domain that compared the performance 

of ML algorithms developed with and without traffic datasets. Hence, there is no known research so far 

to compare the performance gain obtained in this work. 
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a).                                                                                                  b). 
 

  
c).                                                                                                  d). 

 

   
e).                                                                                                  f). 

 

   
g).                                                                                                  h). 

Figure 5. Model performance on Control and experimental datasets for various environmental parameters: a): PM2.5 - Control 
Dataset, b): PM2.5 - Experiment Dataset, c): PM10 - Control Dataset, d): PM10 - Experiment Dataset, e): NO2 - Control Dataset, f): 

NO2 - Experiment Dataset, g): O3 - Control Dataset, and h): O3 - Experiment Dataset 
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The patterns in the performance metrics recorded have reinforced the inherent belief that traffic datasets 

improve the performance of the Air Quality ML prediction model. This further validates the theory in 

(Comert et al., 2020; Hatzopoulou et al., 2013; Pinto et al., 2020; Rossi et al., 2020) and related literature 

that traffic emission has a major effect on air pollution modelling. Additionally, various ML algorithms 

react differently in the presence of traffic datasets. Hence, researchers in air quality prediction need to be 

selective in the process of choosing ML algorithms when their dataset contains a form of traffic dataset. 

Although the performance varied from one pollutant to the other, the overall performance record shows 

that models trained with the experimental data consisting of traffic dataset reported better performance 

when compared with the models trained on the control dataset with no traffic dataset. 

This study implies that it reinforces the understanding that the traffic dataset has a significant effect on 

improving the performance of air pollution ML prediction models. Hence, there is an indication that ML 

algorithms behave differently when trained with a form of traffic dataset in the development of an air 

quality prediction model. This practically implies that developers and researchers in air quality prediction 

need to identify the ML algorithms that behave in their best interest before implementation. This research 

is limited in terms of the study area and the result cannot be generalized outside of the UK as many 

conditions may not be similar elsewhere. Additionally, only the ML algorithms commonly used in literature 

are considered in this research. Therefore, leaving out a few other ML algorithms. 

5 Conclusion 
In this research, we have investigated what impact traffic datasets have on the predictive performance of 

various air pollution ML prediction models. To achieve this, we have set up an experiment with the control 

dataset having only the AQ dataset and Met dataset. While the experimental dataset is made up of the 

AQ dataset, Met dataset and Traffic dataset. ML models were trained and tested on these individual 

combinations of datasets and the performance metrics were evaluated to show that the models trained 

on the experiment dataset consistently outperformed those trained on the controlled datasets. With a 

performance boost of at least 20% and an error reduction of at least 18.97% recorded for 98% of the ML 

algorithms when trained with a dataset containing a form of the traffic dataset, this study reinforces the 

belief that the traffic dataset has a significant effect on improving the performance of air pollution ML 

prediction models. Hence, it can be concluded that a performance boost is induced when ML algorithms 

are trained with a dataset containing a form of the traffic dataset for air quality prediction. Also, this study 

concludes that there is no single algorithm that has the best performance for all the pollutants and 

combinations of datasets. ML algorithms perform differently in various situations and with varying 

combinations of datasets. Future analysis of the result is envisaged with more ML algorithms and research 

datasets. Open research in this domain is to investigate the effect of the dataset granularity on the 

performance of the air pollution ML prediction model, and how the traffic dataset can contribute to the 

granularity of the dataset. 
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Appendix 
Table 7: Summary of related studies in the literature 

SN AUTHORS POLLUTANTS DATASETS ML 
ALGORITHM 

COMPARED WITH BEST PERFORMANCE 

1 (Zhang et al., 2021) PM2.5 AQ EMD-BiLSTM BiLSTM, LSTM R2=0.989, RMSE=6.86 

2 (Du et al., 2021) PM2.5, PM10, NO2, SO2, CO, O3 AQ LCIELM LCIELM, ELM, WNN, Elman, TVFEMD-ELM(T-
E), TVFEMD-WNN(T-W), TVFEMD-Elman (T-
El), VMD-LCIELM(V-L) and EMD-LCIELM(E-L) 

RMSE=0.0482 

3 (Sulaimon & Alaka, 2021) PM2.5, NO AQ, M, T XTR, HGBR LGBM, XGB, RF, BR, NuSVR, GBR, KNN, SVR R2=0.789, RMSE=0.099 

4 (Yarragunta et al., 2021) PM10, PM2.5, SO2,  CO, NO2, O3 AQ DT LR , SVM, RFT, NBT, KNN Accuracy= 99.8% 

5 (Cihan et al., 2021) PM10, PM2.5 AQ, M ANFIS SVR, CART, RF, KNN, ELM R2=0.97,  RMSE=3.05) 

6 (Ashayeri et al., 2021) PM2.5 T, BOP SVR  R2=0.842, RMSE=0.074 

7 (Yafouz et al., 2021) O3 AQ, M  CNN, LSTM  R2=0.9348, RMSE=0.0041 

8 (Shah et al., 2020) PM2.5,  PM10,  O3,  NO2,  SO2, CO AQ SVM RF, DT Accuracy= 95% 

9 (Alpan & Sekeroglu, 2020) PM2.5,  PM10, NO2,  SO2, O3, CO M RF DT, SVR R2=0.74 - 0.86 

10 (Kumari et al., 2020) SO2, O3, NO2 AQ RF   

11 (Dobrea et al., 2020) PM10, PM2.5 AQ, M ARIMA SVR,    LSTM, Corr-Coeff=0.935 

12 (Bozdağ et al., 2020) PM10 AQ, GIS ANN ANN, LASSO, SVR, RF, KNN, XGB R2=0.58, RMSE=20.8 

13 (Selvi & Chandrasekaran, 2020) O3, PM10, NO2 AQ, M ElNN  RMSE=0.0878 

14 (Su et al., 2020) O3 AQ, M KELM-WT-PLS SVR, KELM, BPNN and SR R2=0.78 

15 (Liu & Chen, 2020) PM2.5 AQ HI-EWT-NNA-
WRELM-IEWT 

EWT-WRELM, EWT-WRELM-IEWT, HI-EWT-
WRELM, HI-EWT-WRELM-IEWT, EWT-NNA-
WRELM, HI-EWT-NNA-WRELM, EWT-NNA-
WRELM-IEWT. CEEMD-GWO-SVR, WD-ENN, 
WPD-PSO-BPNN-AdaBoost, WPD-CEEMD-
PSR-PSOGSA-LSSVR, FEEMD-CS-ELM-VMD-
CS-ELM 

RMSE=5 

16 (Wu & Lin, 2019) PM2.5, PM10, SO2, CO, NO2, O3 AQ LSSVM-BA  RMSE=4.4396 

17 (Anurag et al., 2019) CO, C6H6, C6H5CH2CH3, NO, 
C6H4(CH3)2, NOx, O3, PM2.5, SO2, 
C7H8 

M XGB ANN, DT, MLR RMSE=15.97 

18 (Babu & Beulah, 2019) PM2.5, PM10, SO2, CO, NO2, O3, NH3 AQ, M DT LR, RF, KNN,  SVM  

19 (Srivastava et al., 2019) PM2.5, PM10, CO, NO2, SO2, O3 AQ, M SVR   ANN R2=0.02534 

20 (Rossi et al., 2019a) NO2, PM10, O3 T, M BRNN GLM, RF, SVM, ANN Accuracy=0.8 

21 (Rossi et al., 2019b) NO2, PM10, O3 T, M BRNN  GLM, RF, SVM, ANN Accuracy=0.8049 

22 (Mo et al., 2019) PM2.5, PM10, NO2, SO2, CO, O3 AQ ICEEMDAN-
WOA-ELM 

ARMA, GRNN, ELM, GA-ELM, WOA-ELM, 
EEMD-WOA-ELM. 

RMSE=0.0606 

23 (Ray et al., 2019) C6H6 AQ DNN  RMSE=0.405181022925 

24 (Gan et al., 2018) PM2.5 AQ SD-LSSVR-
CPSOGSA 

CEEMD-PSOGSA, CEEMD-CPSOGSA, WPD-
PSOGSA, WPD-CPSOGSA and SD-PSOGSA 

RMSE= 3.7760 

25 (Lin et al., 2018) NO2, PM10, O3, PM2.5 AQ CMG SVR, NAR Accuracy=71.43% 
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26 (Chen, Wang, et al., 2018) PM10 M, LU, AOD RF GAM, NLELRM R2=0.86, RMSE=34.2 

27 (Huang et al., 2018) PM2.5 AOD, M, LU RF  R2=0.78 

28 (Xu et al., 2018) PM2.5 AOD, LST Cubist RF, XGB R2=0.48, RMSE=2.64 

29 (Chen, Li, et al., 2018) PM2.5 M, LU, AOD RF GAM, NLELRM R2=0.86, RMSE=10.7 and 6.9 

30 (Zhang et al., 2018) PM2.5 AQ, M WNN ELM, LSSVM, FNN R2=0.9975, RMSE=1.5124 

31 (Jo & Khan, 2018) CH4, CO, SO2, H2S AQ ANN MLR, PCA-LR, ANN R2=0.6654, RMSE=0.2104 

32 (Ni et al., 2017) PM2.5 M BPNN ARIMA RMSE=6.76 

33 (Biancofiore et al., 2017) PM2.5, PM10 AQ, M RNN ANN, MLR R2=0.8855 

34 This study PM2.5, PM10, NO2, O3 AQ, M, T XTR, RF, LGBM, 
XGB 

HGBR, BR, NuSVR, GBR, KNN, MLPR, DT, SVR R2=0.737023, RMSE=4.019938 

Note: ANFIS=Adaptive Neuro-fuzzy Inference System; ANN=Artificial Neural Network; AOD=Satellite-based Aerosol Optical Depth data; AQ=Air Quality data; ARIMA=Autoregressive Integrated Moving Average; BA= Bat 

Algorithm; BiLSTM=Bidirectional Long Short-Term Memory neural networks; BOP=Building Occupancy Pattern; BPNN=Back Propagation Neural Network; BR=Bagging Regressor; BRNN=Bayesian Regularization of Neural 

Networks; CART=Classification Regression Trees; CEEMD=Complementary Ensemble Empirical Mode Decomposition algorithm; CH4=Methane; CMG=Cloud Model Granulation; CO=Carbon Monoxide; CPSOGSA=Chaotic 

Particle Swarm Optimization Method combined with the Gravitation Search Algorithm (CPSOGSA); C6H4(CH3)2=meta-Xylene; C6H5CH2CH3=Ethylbenzene; C6H6= Benzene; C7H8=Toluene; DNN=Deep Neural Network; 

DT=Decision Tree;  EEMD=Ensemble Empirical Mode Decomposition; ELM=Extreme Learning Machine; ELM=Extreme Learning Machine; ElNN=Elman Neural Network; EMD=Empirical Mode Decomposition; EWT=Empirical 

Wavelet Transform; FNN=Fuzzy Neural Network; GAM=Generalized additive models; GBR=Gradient Boosting Regressor; GIS=Geographic Information System data; GLM=Generalized Linear Model; GRNN=Generalized 

Regression Neural Network; HGBR=Histogram-based Gradient Boosting Regressor; HI=Hampel Identifier; H2S=Hydrogen Sulfide Carbonyl Sulfide; ICEEMDAN=Improved  Complete  Ensemble  Empirical  Mode  Decomposition  

with Adaptive Noise; IEWT=Inverse Empirical Wavelet Transform; IMF=Intrinsic Mode Function; KELM=Kernel Extreme Learning Machine; KNN=k-Nearest Neighbor; LCIELM=Length-Changeable Incremental Extreme Learning 

Machine; LGBM=Light Gradient Boosted Machine Regressor; LR=Logistic Regression; LSSVM=Least Squares Support Vector Machine; LST=Land Surface Temperature data; LU=Land Use data; M=Meteorological data; 

MLPR=Multi-Layer Perceptron Regressor; MLR=Multiple Linear Regressor; NAR=Non-linear Autoregressive neural network; NBT=Nave Bayes Theorem; NH3=Ammonia; NLELRM=Non-linear Exposure-lag-response Model; 

NNA=Neural Network Algorithm; NO2=Nitrogen Dioxide; NuSVR=Nu Support Vector Regression; O3=Ozone; PCA=Principal Component Analysis; PLS=Partial Least Squares; PM2.5=Particulate Matter(diameter=2.5μm); 

PM10=Particulate Matter(diameter=10μm); PSR=Phase Space Reconstruction; RF=Random Forest; RFT=Random Forest Tree; SD=Secondary Decomposition; SO2=Sulfur Dioxide; SVM=Support Vector Machine; SVR=Support 

Vector Regressor; T=Traffic data; WNN=Wavelet Neural Network; WOA=Whale Optimization Algorithm; WRELM=Weighted Regularized Extreme Learning Machine; WT=Wavelet Transformation; XGB=Feature-Based 

Weighted Xgboost; XTR= Extra Trees Regressor



27 
 

Table 8: Description of Air Quality Dataset 

 
DATE_TIME LATITUDE LONGITUDE NO2 PM10 SO2 FINE O3 PM1 PM25 TSP CO SO2 NO2 NO AQI 

COUNT 1730587 1730587 1730587 1485522 992010 183928 48179 632308 20511 690523 18978 32854 52 51 609070 516492 

MEAN 1614298670 58.71559 4.915295 23.2387 16.47164 4.088476 9.357272 50.46037 8.97026 9.019211 17.75867 3.872447 6.365385 20.70588 10.83223 1.680098 

STD 4437418.76 305.251 306.3504 19.63155 12.51445 7.085552 7.879215 23.41542 9.690547 7.660558 15.14442 40.88974 0.65765 13.91732 24.97005 0.848755 

MIN 1606780800 49.76681 -9.90392 -32.3 -14 -12.3 -6.4 -5.4 0.1 -13 0.5 -0.5 5 2 -0.68602 0 

25% 1610449200 51.45797 -2.29377 8.415 9 1.6 5 34 3 4.151 9.4 0.11642 6 6 0.62365 1 

50% 1614304800 51.5579 -0.78029 17.78625 13.8 3 7.2 53 5.3 7 14.6 0.34926 6 21 2.36987 2 

75% 1617879600 53.40495 -0.12019 33 20.9 5 10.9 68 11.5 11.132 21.2 0.69852 7 31 9.35475 2 

MAX 1622570400 15000 15000 282 1361.6 1210 141.9 201.7653 121.3 713 403.1 1100 7 54 766.3411 10 

Table 9: Description of Weather Dataset 

 
DT LATITUDE LONGITUDE TEMP FEELS_LIKE PRESSURE HUMIDITY TEMP_MIN TEMP_MAX SPEED DEG ALL ID 1H 

COUNT 1373712 1373712 1373712 1373712 1373712 1373712 1373712 1373712 1373712 1373712 1373712 1373712 1373712 0 

MEAN 1614343976 52.27683 -1.09944 279.7678 275.7696 1011.972 79.94682 278.9453 280.5779 3.732348 184.7709 61.84165 761.3301 
 

STD 4567323.989 1.544163 1.682915 4.394833 4.904104 13.65112 15.01623 4.412379 4.436787 2.399483 102.2342 35.11993 101.2075 
 

MIN 1606780800 49.76681 -9.90392 259.15 241.94 952 1 259.15 259.15 0.02 0 0 211 
 

25% 1610420400 51.45636 -1.8774 276.51 272.31 1003 71 275.93 277.15 2.06 90 30 800 
 

50% 1614056400 51.53085 -0.2775 279.88 275.74 1013 83 279.15 280.37 3.13 210 75 802 
 

75% 1618005600 52.95473 -0.05077 282.81 279.1 1023 93 282.04 283.71 5.14 260 90 804 
 

MAX 1622595600 60.13922 1.463497 298.23 298.81 1060 100 298.15 304.15 50.93 360 100 804 
 

Table 10: Description of Traffic Dataset 

 
 
CURREN
T SPEED 

 
FREEFLOW 
SPEED 

 
CURRENT_ 
FREEFLOW 
SPEED 

 CURRENT 
TRAVELTIME 

 FREEFLOW 
TRAVELTIME 

 FREEFLOW_ 
CURRENT 
TRAVELTIME 

 
CONFIDENCE 

 
ROADCLOSURE 

 DT LONGITUDE  LATITUDE 

COUN
T 

485955 485955 482904 485955 485955 482904 485955 485955 485955 479818 479818 

MEAN 24.5923
6 

26.78424 0.902648 73.63438 61.04907 0.902127 0.925651 0.026194 1618276937 -1.12234 52.33627 

STD 11.3973
7 

10.23113 0.163828 47.50204 27.75625 0.164403 0.142133 0.319594 1908591.839 1.484598 1.578814 

MIN 0 0 0.053587 0 0 0.053699 0.5 0 1614909600 -7.3311 50.37167 

25% 16.75 20.5 0.863971 46.75 41 0.863479 0.95 0 1616619600 -1.9808 51.4549 

50% 23 25 1 66 60 1 0.9975 0 1618297200 -0.3456 51.53085 

75% 30 31 1 89.5 78 1 1 0 1619892000 -0.0967 53.22137 

MAX 71 71 1 1734.25 181 1 1 4 1621710000 1.4634 60.13922 

 


