
Citation:
Sayadi, L and Timarchi, S and Sheikh Akbari, A (2023) Two Efficient Approximate Unsigned
Multipliers by Developing New Configuration for Approximate 4:2 Compressors. IEEE Trans-
actions on Circuits and Systems Part 1: Regular Papers. pp. 1-11. ISSN 1549-8328 DOI:
https://doi.org/10.1109/TCSI.2023.3242558

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/9300/

Document Version:
Article (Accepted Version)

c© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/9300/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

Abstract— Approximate computing is a promising approach

for reducing power consumption and design complexity in

applications that accuracy is not a crucial factor. Approximate

multipliers are commonly used in error-tolerant applications. This

paper presents three approximate 4:2 compressors and two

approximate multiplier designs, aiming at reducing the area and

power consumption, while maintaining acceptable accuracy. The

paper seeks to develop approximate compressors that align

positive and negative approximations for input patterns that have

the same probability. Additionally, the proposed compressors are

utilized to construct approximate multipliers for distinct columns

of partial products based on the input probabilities of the two

compressors in adjacent columns. The proposed approximate

multipliers are synthesized using the 28nm technology. Compared

to the exact multiplier, the first proposed multiplier improves

power×delay and area×power by 91% and 86%, respectively,

while the second proposed multiplier improves the two parameters

by 90% and 84%, respectively. The performance of the proposed

approximate methods was assessed and compared with the

existing methods for image multiplication, sharpening, smoothing

and edge detection. Also, the performance of the proposed

multipliers in the hardware implementation of the neural network

was investigated, and the simulation results indicate that the

proposed multipliers have appropriate accuracy in these

applications.

Index Terms—Approximate Computing, Multiplier, 4:2

Compressor, Low-Power Design, Image Processing.

I. INTRODUCTION

inimizing power consumption has become a significant

challenge for preserving lifetime and reliability due to the

fast increase of integrated circuits’ density. In addition, power

consumption is a major consideration for portable devices [1].

Approximate computing units has demonstrated to be a

promising and viable approach in achieving low-power design

[5]-[7]. Approximate computing can be employed in error-

tolerable applications in which the occurrence of inaccuracy

does not affect the results, e.g, multimedia processing [33]-[34],

machine learning [2]-[3], and data mining [4]. These

applications have intensive multiplication operations.

Multiplier is one of the basic circuits in processors and is known

as a power-hungry unit [4]. A multiplier involves three steps:

 1) partial product generation

 2) partial product reduction

 3) final addition

Depending on which step or steps are approximated, various

categories of approximate multipliers exist. Some schemes are

focused on simplification of partial products generation [8], [9],

[30], [31]. In [8], the operands are split into two equal-sized

parts: multiplication and non-multiplication parts. In the

multiplication part, multiplication is performed conventionally,

while in non-multiplication part, the operation is performed

from the most to the least significant bits. If at least one bit

equals '1', all other bits of output are set to '1'. In [9], the authors

introduced the so-called dynamic range unbiased multiplier.

Their method first identifis the most significant '1' using a

leading ‘1’ detector block, and then a subsequent k-bit is

considered as operand. Ref. [30] presented a truncation-based

Booth multiplier with a compensation block, which has a

variable truncation factor. By simplification and approximation

of the partial product generation, [31] developed an

approximate hybrid high-radix encoding. In the method, the

most significant bits (MSBs) of the multiplicand are encoded

using radix-4 encoding, while the k least significant bits (LSBs)

are encoded by radix-2k.

The partial product reduction is known as the step that

contributes more area and power consumption than others [11].

Significant research on reducing the hardware costs associated

with the second multiplication step has been reported in the

literature and it has been shown that using compressors to create

more efficient circuitry is one of the viable options [18]. In [10]-

[21], approximate compressors for partial products reduction

were reported, where the proposed methods achieved different

degrees of accuracy and cost reduction.

Other methods for partial product reduction were reported in

[22] and [23]. In [22], an approximate multiplier, also known as

a broken-array multiplier, was reported. Ref. [29] provided

approximate adders that is used for additions required in

multiplication for DSP applications

 In [23], an approximate multiplier was introduced which

designed approximate adders by cutting the carry propagation

chain and incorporating a parallel error recovery section,

There are also other approaches for designing approximate

multipliers as presented in [24]-[27], and [32]. Approximate

booth encoding is another approximation method presented in

[24] and [25]. In [26], inexact adders were used to compute the

Two Efficient Approximate Unsigned Multipliers

by Developing New Configuration for

Approximate 4:2 Compressors

 Ladan Sayadi, Somayeh Timarchi, Akbar Sheikh-Akbari

M

Ladan Sayadi and Somayeh Timarchi are with the Faculty of Electrical

Engineering, Shahid Beheshti University, Tehran 1983963113, Iran

(l.sayadi, s_timarchi@sbu.ac.ir). Akbar Sheikh-Akbari is with Leeds

Beckett University, Leeds, U.K. (A.Sheikh-Akbati @leedsbeckett.ac.uk).:

summation of the mantissa using logarithmic multipliers. In

[32], an approximate logarithmic multiplier was presented by

truncating the operation and compensating the error of adders.

Performing multiplication using a shifter, adder, and subtractor

was proposed in [27]. To further reduce the power consumption

and design complexity, this paper proposes three approximate

4:2 compressors and two approximation multipliers. The

contributions of this paper are as follow:

• Proposing three approximate 4:2 compressors.

o Analyzing the probabilities of the

compressor’s output for stage one of

partial product reduction.

o Presenting a new technique for designing

an approximate compressor, which is

based on using equal positive and negative

approximation for compressor’s input

patterns that have equal probabilities.

• Proposing two new approximate unsigned

multipliers.

o Describing how the compressors in the

adjacent columns of multiplier’s structure

affects error performance by examining

the probabilities.

o Proposing a new method for utilizing

appropriate compressors for different

columns of approximate multiplier to

reduce the error.

The approximate multipliers were described in VHDL for 8-

bit operands and synthesized by design compiler (DC) tool with

28 nm TSMC technology. The accuracy and quality metrics

were computed using MATLAB software. The two proposed

multipliers were used for image multiplication, image

sharpening, smoothing, and edge detection. It is also essential

to consider both hardware performance and quality parameters

for a fair comparison. So, in this paper, a Figure of Merit (FOM)

was used which considers both quality and efficiency factors.

The use of the FOM assures that there is a satisfactory trade-off

between quality and efficiency.

The rest of the paper is organized as follows: Section II

explains exact 4:2 compressors and briefly reviews previous

approximate 4:2 compressors. Section III introduces the

designing technique and proposed schemes in details, including

the proposed compressor and multiplier structures. An

evaluation and comparison of the two proposed multipliers with

the state-of-the-art methods are presented in Section IV. The

evaluation section includes the implementation parameters,

accuracy metrics, and results of image multiplication

sharpening, smoothing, edge detection and neural network

application which includes multi-layer perceptron (MLP)

neural network and a convolution neural network (CNN).

Ultimately, Section V concludes the paper.

II. BACKGROUND

Compressors are widely used in multipliers to speed up the

partial product reduction process. They come in a variety of

topologies, including 7:2, 5:2, and 4:2. However, the 4:2

compressor is more common. A conventional implementation

of the exact 4:2 compressor comprises cascaded full adders, as

shown in Fig. 1 [11] and its outputs are calculated by (1), (2),

and (3).

𝑠𝑢𝑚 = 𝑥1 ⊕ 𝑥2⨁𝑥3⨁𝑥4⨁𝑐𝑖𝑛
(1)

𝑐𝑎𝑟𝑟𝑦 = (𝑥1 ⊕ 𝑥2⨁𝑥3⨁𝑥4) ∙ 𝑐𝑖𝑛

+ (𝑥1 ⊕ 𝑥2⨁𝑥3⨁𝑥4
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) ∙ 𝑥4

(2)

𝐶𝑜𝑢𝑡 = (𝑥1 ⊕ 𝑥2) ∙ 𝑥3 + (𝑥1 ⊕ 𝑥2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅) ∙ 𝑥1

(3)

Full adder

Full adder

x1 x2 x3 Cinx4

Cout carry sum

Fig. 1. Structure of The Exact 4:2 Compressor [11].

where Cin, Cout, and sum are input carry, output carry and sum

of a 4:2 compressor, respectively. Cin is taken from the

compressor in the lower significant position, whereas Cout goes

to the compressor in the higher significant position.

Several efficient approximate 4:2 compressors designs

aiming at reducing the complexity of exact compressor have

been reported in the literature [10], [12]-[23]. In [12], two

approximate compressors were proposed where the first one is

based on inserting errors in the truth-table of the exact 4:2

compressor and the second one is based on ignoring the Cin and

Cout. The second method was further expanded by other

researchers.

An approximate 4:2 compressor made of a single OR gate

was introduced in [10]. In [13], authors presented an

approximate 4:2 compressor, which produces a 21% error rate

in the truth table. This method was then extended to design a

5:2 compressor. Four reconfigurable dual-quality compressors

with the ability to operate in either precise or approximate mode

were introduced in [14], where each of their unused circuit

modes are turned off using a power gating technique. In [15],

partial products are converted into more likely and

unlikely terms and then an approximate 4:2 compressor, a full

adder and a half adder were proposed based on this concept. In

[16], the majority function was used to define carry, while the

sum is constant and equal to '1', and FinFET was used to build

the approximate 4:2 compressor in transistor level. In [17], an

approximate 4:2 compressor and an error recovery module for

compensating generated negative errors was introduced. In

[18], the authors presented two approximate 4:2 compressors,

where one of them is a modified dual-stage compressor and its

designed truth table contains equal number of +1 and -1 errors.

In [19], an approximate compressor based on the stacking

circuit concept was reported. In [20], three approximate

compressors were developed by designing just sum output,

which results in generating negative error distances in the truth

table. So, an error-correcting module was employed for

compensation of the negative approximation. In [21], the

authors reported the design of two structure 4×4 multiplier with

an approximate 4:2 compressor through preprocessing partial

products, where larger multipliers were constructed by the

given 4×4 multiplier.

III. PROPOSED SCHEMES

The proposed scheme consists of four sections. The first two

sections describe the proposed design technique of compressors

and three approximate 4:2 compressors based on the proposed

design technique. In the next two sections, a new approach for

multiplier structure as well as two new approximate unsigned

multiplier structures are presented.

A. Proposed technique for designing approximate

compressors

This section attempts to analyze the parameters that influence

the accuracy of an approximate compressor and then proposes

an approach to explore a new design. The efficiency of an

approximate compressor can be analyzed by applying it to a

multiplier structure. Fig. 2 is commonly used to represent an 8-

bit unsigned multiplier. Two stages are depicted in Fig. 2: stage

1 and stage 2.

C1

s
s

s
s

5678910

C2

S1

S2S2 S2S2

S1 S1S1

C1 C1 C1

C2 C2 C2C

C

C

C

Stage 1

1112 Truncated

Stage 2

Fig. 2. Overall structure of proposed an 8-bit multiplier.

Assuming uniform distribution for input operands of the

multiplier, the probability of compressors input in stage 1 can

be calculated. However, it is not clear for compressors in stage

2, because it is contingent on the approximate compressor’s

structure. So, this section focuses on the probability of the

output derived from stage 1.

Let's assume P0 be the probability that the compressor output

is exact also, P+ and P- signify the probabilities of compressor

output with positive and negative approximation, respectively.

In this scenario, placing two compressors in one column, for

example in columns 7 through 10, results in three different

Error Distance (ED) with absolute values of 0, 1, and 2, where

ED is the difference between the correct and incorrect output.

Fig. 3 summarizes all conceivable output states’ combinations

of two compressors in one column, and their corresponding

absolute ED.

0P+P-P

0P+P-P0P0P +P+P -P-P

ED=0ED=1ED=1ED=1ED=2ED=0ED=1ED=0ED=2

P0 : exact output probability

P+ : positive approximated output probability

P- : negative approximated output probability

Fig. 3. States of absolute ED resulting of two compressors in one column

at stage1.

According to the EDs, shown at the bottom of the Fig. 3,

under three conditions, the sum of EDs of two compressors in

the same column becomes zero. One of the conditions is when

both compressor’s outputs are exact, where the probability of

this condition equals P0×P0=P0
2. Besides, if the probability of

the first (and the second) compressor’s outputs has opposite

signs (P+ and P-), the generated ED will be zero with the

probability of 2×(P+×P-). Here, the probability of the correct

output for a column at stage 1 is given by P (ED=0), which

equals the sum of all the three conditions’ probabilities, where

ED is zero. Equation (4) defines ∑ 𝑃(ED = 0). According to

the probability concepts, (5) is also established.

∑ 𝑃(ED = 0) = 𝑃0
2 + 2 × (𝑃+ × 𝑃−)

(4)

𝑃0 + 𝑃+ + 𝑃− = 1
(5)

A well-designed approximate multiplier maximizes

∑ 𝑃(ED = 0). This means that P0 must be as high as possible

or P+=P- in order to maximize ∑ 𝑃(ED = 0).

Let's assume that the probability of a positive or negative

outcome is denoted using the notation pi+ and pi- for each of the

16 input patterns of 4:2 compressor. The ED for each pattern is

represented by EDi. So, the positive and negative

approximation probabilities of the compressor output can be

determined using equation (6) and (7), respectively. Equations

(6) and (7) must be equal to set the condition P+=P-.

∑(𝑝𝑖+ × 𝐸𝐷𝑖) = 𝑃+
(6)

∑(𝑝𝑖− × 𝐸𝐷𝑖) = 𝑃−
(7)

Consequently, it is necessary to know the probability of the

compressor’s inputs to reduce the multiplication error. The

compressor’s inputs at stage 1 are partial products, which are

generated by an AND gate. By assuming a uniform distribution

of the multiplier’s inputs, the probability of the partial product

to be '0' or '1' is 3/4 and 1/4, respectively. For example, the

probability of '0001' is (
3

4
×

3

4
×

3

4
×

1

4
=

27

256
). A categorization

based on the probability of each of the 16 input patterns labeled

as x1x2x3x4 is illustrated in Table I. The input patterns that have

the same compressor’s output are grouped together, as

explained in [20].
TABLE I

PROBABILITY OF OCCURRENCE OF INPUTS AND GROUPING OF INPUTS
Probability of each input in

the group x1x2x3x4
Grouping

No.
81/256 0000 first
27/256 0001,0010,0100,1000 second
9/256 0011,1100,0101,1010,0110,1001 third
3/256 0111,1110,1011,1101 fourth
1/256 1111 fifth

Since each group of inputs has the same probability, P+=P-

can be established by considering of equal positive and negative

EDi in each input group. So, an equal negative and positive

approximations to each input group in the proposed

approximate 4:2 compressor will be applied. Further

information about the importance of using both positive and

negative approximation in the truth table for compressors

development can be found in [13] and [18]. However, the AND

gates in stage 1 does not generate equal probability for the

compressor inputs, as explained in [18]. The probabilities of

the input are not equal, as shown in Table I, which is in contrast

to [18].

B. Three proposed approximate compressors

The proposed schemes do not include the Cin and Cout, similar

to existing approximate compressor. The proposed compressors

are categorized according to the number of gates that they have.

They are proposed as follows:

1) Approximate Compressors with 6 Gate (AC6G)

2) Approximate Compressors Free Gate I (ACFGI)

3) Approximate Compressor Free Gate II (ACFG II)

I. AC6G design

An important design consideration for this compressor is

assuming that P+=P- as mentioned in section A. The

compressors in the same category of the proposed AC6G design

are listed in Table II. Using input permutation, 16 compressors

in this category can be created. The compressors are denoted by

the notation AC6G-n, where n is the compressor number.

As an example, AC6G-12 Karnaugh map has been shown in

Fig. 4, where Fig 4a and b show Karnaugh map of output sum

and carry, respectively and Fig. 4c shows the used

approximation for input patterns. The first to fifth groups of the

inputs are shown in black, green, blue, red, and yellow colour,

respectively. Seven input patterns from third and fifth group are

approximated. P+=P- is set for the third group of the inputs,

while the fifth group is approximated due to the absence of the

Cin and Cout. The compressors in AC6G category have the

highest accuracy compared with the two other proposed

category due to the well-established condition P+= P-.

According to (2), Critical Path Delay (CPD) of exact

compressor is “2tXOR+tAND+tOR”, where tXOR, tAND and tOR is the

delay of 2-input XOR, AND and OR gates, respectively. CPD

of AC6Gs equals to ”2×tOR+tAND”.

x1x2

x3x4

0 1 1 1

1 1 1 1

1 1

1 1

1

1

1

1

x3x4

x1x2

0

0

1

0 0

1

01

1

1

0

0

1

1

1

0

x3x4

0 0 +1 0

0 -1 0 +1

0 -1 0

+1 0 -1

-1

0

x1x2

(a) (b) (c)

Fig. 4. Karnaugh map for AC6G-12. a) sum output. b) carry output. c) the

approximation used for input patterns.

𝑥3

𝑥1

𝑥2
𝑥4

sum

carry

Fig. 5. The gate schematic of the AC6G-12

TABLE II

OUTPUTS OF ALL ACF6G COMPRESSORS

carry sum Compressors No.

(𝑥1 ∙ (𝑥3 + 𝑥4)) + (𝑥2 ∙ 𝑥3) (𝑥1 + 𝑥2) + (𝑥3 + 𝑥4) AC6G-1

(𝑥1 ∙ (𝑥3 + 𝑥4)) + (𝑥2 ∙ 𝑥4) (𝑥1 + 𝑥2) + (𝑥3 + 𝑥4) AC6G-2

(𝑥1 ∙ (𝑥3 + 𝑥4)) + (𝑥3 ∙ 𝑥4) (𝑥1 + 𝑥2) + (𝑥3 + 𝑥4) AC6G-3

(𝑥2 ∙ (𝑥3 + 𝑥4)) + (𝑥1 ∙ 𝑥3) (𝑥1 + 𝑥2) + (𝑥3 + 𝑥4) AC6G-4

(𝑥2 ∙ (𝑥3 + 𝑥4)) + (𝑥1 ∙ 𝑥4) (𝑥1 + 𝑥2) + (𝑥3 + 𝑥4) AC6G-5

(𝑥2 ∙ (𝑥3 + 𝑥4)) + (𝑥3 ∙ 𝑥4) (𝑥1 + 𝑥2) + (𝑥3 + 𝑥4) AC6G-6

(𝑥3 ∙ (𝑥1 + 𝑥2)) + (𝑥1 ∙ 𝑥2) (𝑥1 + 𝑥2) + (𝑥3 + 𝑥4) AC6G-7

(𝑥4 ∙ (𝑥1 + 𝑥2)) + (𝑥1 ∙ 𝑥2) (𝑥1 + 𝑥2) + (𝑥3 + 𝑥4) AC6G-8

(𝑥1 ∙ (𝑥2 + 𝑥4)) + (𝑥2 ∙ 𝑥3) (𝑥1 + 𝑥3) + (𝑥2 + 𝑥4) AC6G-9

(𝑥1 ∙ (𝑥2 + 𝑥4)) + (𝑥3 ∙ 𝑥4) (𝑥1 + 𝑥3) + (𝑥2 + 𝑥4) AC6G-10

(𝑥3 ∙ (𝑥2 + 𝑥4)) + (𝑥1 ∙ 𝑥2) (𝑥1 + 𝑥3) + (𝑥2 + 𝑥4) AC6G-11

(𝑥3 ∙ (𝑥2 + 𝑥4)) + (𝑥1 ∙ 𝑥4) (𝑥1 + 𝑥3) + (𝑥2 + 𝑥4) AC6G-12

(𝑥1 ∙ (𝑥2 + 𝑥3)) + (𝑥2 ∙ 𝑥4) (𝑥1 + 𝑥4) + (𝑥2 + 𝑥3) AC6G-13

(𝑥1 ∙ (𝑥2 + 𝑥3)) + (𝑥3 ∙ 𝑥4) (𝑥1 + 𝑥4) + (𝑥2 + 𝑥3) AC6G-14

(𝑥4 ∙ (𝑥2 + 𝑥3)) + (𝑥1 ∙ 𝑥2) (𝑥1 + 𝑥4) + (𝑥2 + 𝑥3) AC6G-15

(𝑥4 ∙ (𝑥2 + 𝑥3)) + (𝑥1 ∙ 𝑥3) (𝑥1 + 𝑥4) + (𝑥2 + 𝑥3) AC6G-16

This paper focuses on the design of compressors with nearly

equal positive and negative approximations for the input

groups. There is a trade-off between designing an efficient

hardware and verifying P+=P-. Since reducing the cost of the

hardware is a fundamental design objective, it is aimed to

achieve a free gate compressor, where condition P+=P- is met

for as many inputs as possible for the two proposed

compressors, named: ACFGI and ACFGII.

II. ACFGI design

The ACFGI outputs’ equations are tabulated in Table III.

Carry output corresponds to one of the inputs, whereas its sum

output is equal to '1'. Four distinct compressor designs can be

generated from the information tabulated in Table III by

permutation input.

As an example, the Karnaugh map of the ACFGI-4 is shown

in Fig. 6.

TABLE II
OUTPUTS OF ALL ACFGI COMPRESSORS

carry sum Compressors No.

x1 1 ACFGΙ-1

x2 1 ACFGΙ-2

x3 1 ACFGΙ-3

x4 1 ACFGΙ-4

x1x2

x3x4

1 1 1 1

1

1

1 1

1 1 1

1 1 1

1 1

x1x2

0

1 1 00

1 1 0

1 1 0

1 1 0

0

0

x3x4

x3x4

+1 +2 +1 0

0 +1 0 -1

0 -1 -2

+1 0 -1

-1

0

x1x2

(a) (b) (c)

Fig. 6. Karnaugh map of ACFGΙ-4. a) sum output. b) carry output. c) the

approximation used for the input patterns.

In the design of this compressor, achieving low hardware is

a priority, so P+=P- is confirmed only for the third input group.

Despite its lack of high accuracy, this compressor is the most

efficient candidate for low-cost implementation. Since sum

output is a constant value of '1', the final addition step in the

multiplier is simplified. This compressor is appropriate for

applying to the least significant partial product columns.

III. ACFGII design

 The output equations of the ACFGΙΙ designs are tabulated in

Table IV. From this table, it can be seen that twelve distinct

compressors with a slightly different set of input permutations,

can be developed. However, one of the possible compressors

have been reported in [14]. Hence, this paper explores all

possible ACFGII compressors and their use in multipliers.
TABLE IV

OUTPUTS OF ALL ACFGII COMPRESSORS

carry sum Compressors No.

x2 x1 ACFGΙΙ-1

x3 x1 ACFGΙΙ-2

x4 x1 ACFGΙΙ-3

x1 x2 ACFGΙΙ-4

x3 x2 ACFGΙΙ-5

x4 x2 ACFGΙΙ-6

x1 x3 ACFGΙΙ-7

x2 x3 ACFGΙΙ-8

x4 x3 ACFGΙΙ-9

x1 x4 ACFGΙΙ-10

x2 x4 ACFGΙΙ-11

x3 x4 ACFGΙΙ-12

x1x2

x3x4

0 0 0 0

1

1

0 0

1 1 1

1 1 1

0 0

x1x2

x3x4

1

0 0 00

1 1 1

1 1 1

0 0 0

1

0

x3x4

0 -1 -2 -1

+1 0 -1 0

0 -1 0

-1 -2 -1

+1

0

x1x2

(a) (b) (c)

Fig. 7. Karnaugh map for ACFGII-1. a) sum output. b) carry output. c)

approximation used for input patterns

ACFGII-1’s compressor’s Karnaugh map is shown in Fig. 7.

From Fig. 7(a) and (b), the sum and carry have equal ones in

their Karnaugh maps. From Fig. 7(c), the ACFGII-1 represents

ten inputs’ approximations, where the input ‘0000’ has the

highest probability values and it is not approximated.

Therefore, ACFGII generates higher performance in terms of

accuracy in comparison to ACFGI.

C. Proposed technique for designing approximate multiplier

In this paper different compressors for adjacent partial

product column are used. The input probability of the two

compressors in the two columns of the partial products is first

studied. The proposed design approach for creating the

multiplier’s structure is then explained.

Fig. 8 shows the first stage of the 8-bit multiplier with its two

operands: A and B. Two compressors in columns 4 and 5 have

been highlighted by red color to analyze their behavior as an

example of adjacent compressors.

b0a7 b0a6 b0a5 b0a4 b0a3 b0a2 b0a1 b0.a0

b1a7 b1a6 b1a5 b1a4 b1a3 b1a2 b1a1 b1a0

b2a7 b2a6 b2a5 b2a4 b2a3 b2a2 b2a1 b2a0

b3a7 b3a6 b3a5 b3a4 b3a3 b3a2 b3a1 b3a0

b4a7 b4a6 b4a5 b4a4 b4a3 b4a2 b4a1 b4a0

b5a7 b5a6 b5a5 b5a4 b5a3 b5a2 b5a1 b5a0

b6a7 b6a6 b6a5 b6a4 b6a3 b6a2 b6a1 b6a0

b7a7 b7a6 b7a5 b7a4 b7a3 b7a2 b7a1 b7a0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Fig. 8. Stage 1 of the 8-bit multiplier.

Regardless of their operand’s lengths, there is a relation

between two adjacent columns in multipliers, e.g., if both b0a3

and b1a2 in column 4 are equal to '1', it implies that both a3 and

b1 have value of 1. So, it is reasonable to assume that b1a3 in

column 5 must have value of '1'. Hence, it can be concluded that

the inputs of the compressor in neighboring columns are

dependent.

Let's assume having two compressors, one in column i and

another in column i+1. If one of the 16 input patterns occurs in

column i, the probability of some inputs occurring in column

i+1 is zero. Additionally, the probability of some of the input

patterns is higher than others due to their mentioned

dependencies. As a result, if one of the input patterns occurs in

column i, the probabilities cannot be obtained using given

information in Table I. Hence, the conditional probabilities for

patterns occurrences have been calculated from the multiplier

simulation using MATLAB software and tabulated in Table V.

For instance, if the compressor input in column i is "0001",

then P(i+1|i=0001) gives the probability of all possible input

patterns in column i+1. Based on presented information in

Table V, if an input pattern from the nth (1≤n≤5) input group

occurs in column i of a compressor, the same input pattern is

most probably among inputs of the nth group in column i+1.

For example, if the compressor input in column i is equal to

group belongs to '0001'. It worth to mention that Table I

represents probabilities of all input patterns in a group that have

the same probability, while Table V represents, conditional

occurrence probabilities of the input patterns and if a pattern

occurs in column i, the groups do not have the same probability

in column i+1. '0001' (an input from the second group), then in

column i+1, the highest probability input compared to other

inputs of second

The design principle deduced from Table V is that if the

compressor input in column i is approximated, then that input

in column i+1 must be calculated accurately or approximated

by the opposite sign. It is possible to get close to approximations

with opposite signs by using proposed compressors with input

permutations for columns i and i+1.

The proposed multiplier structures utilize a range of

compressors with different approximations following the result

of Table V. Since the proposed design guideline is generic, a

trial-and-error method is required to determine the appropriate

position for the compressors to reduce the total error of

multiplier.

 Algorithm 1 describes the proposed method in multipliers

implementation. It is also notable that since the process of

creating partial products in a multiplier of any size is the same,

the probabilities given in Table V for a multiplier of size n are

true and proposed design can be easily generalized to n-bit

multipliers. The first four columns of proposed multipliers are

truncated. For proposed-mul1 and proposed-mul2, respectively,

ACFGΙs and ACFGΙΙs are utilized, while AC6Gs are used in

the upper columns for both proposed multipliers. As a result,

algorithm is started by figuring out which AC6Gs should be

located in the upper columns then taking into account the

interdependency between columns, appropriate compressors

for the middle columns are chosen. To begin, exact compressors

are arranged in a multiplier structure, and then the compressor

for column 11 is chosen by swapping in all 16 compressors and

comparing their NMED parameters to get the lowest value. The

same process is repeated for other upper column. The

aforementioned procedure has been also used to establish the

best arrangement of compressors for the middle columns.

For general n-bit multiplier, similar to the proposed 8-bit

multiplier described above, the columns are partitioned into

three sections. The truncated section includes column 1 to n/2.

The middle columns are ((n/2)+1) to ((3n/2)-1) and the upper

columns include column (3n/2) to (2n-3).

D. Two Proposed approximate 8-bit multipliers’ structures

This section describes the structures of the two proposed

approximate multipliers, called proposed-mul1 and proposed-

mul2. In the multipliers, four least significant columns of partial

products are eliminated. The AC6Gs are used for eleventh to

thirteenth column because of their great precision. The ACFGIs

and ACFGIIs are used for columns 5 to 10 in the proposed-mul1

and proposed-mul2.

TABLE V
OCCURRENCE PROBABILITY OF COLUMN I+1 INPUTS ACCORDING TO COLUMN I INPUTS

1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 Probabilities

0 0 0 0 0 4

324

6

324

26

324
 0 0

6

324

30

324
 0

32

324

42

324
 178

324
 P(i+1|i=0000)

 0 0 0 0 2

108
 0

4

108

4

108
 0 0

6

108

6

108

16

108

16

108
 26

108

26

108
 P(i+1|i=0001)

0 0 0 0 0
4

108
 0

6

108
 0

12

108

6

108

18

108
 0

22

108
 10

108

30

108
 P(i+1|i=0010)

0 0 0 0
2

36

2

36
 0 0

6

36

6

36
 0 0

10

36

10

36
 0 0 P(i+1|i=0011)

0 0 0
10

108
 0

4

108

4

108

16

108
 0 0

4

108

22

108
 0

8

108
 8

108

32

108
 P(i+1|i=0100)

0 0
2

36
 0

2

36

2

36

2

36

2

36
 0 0

4

36

4

36

4

36

4

36
 4

36

6

36
 P(i+1|i=0101)

0
4

36

2

36

6

36
 0 0 0 0 0

8

36

4

36

12

36
 0 0 0 0 P(i+1|i=0110)

2

12

2

12
 0 0 0 0 0 0

4

12

4

12
 0 0 0 0 0 0 P(i+1|i=0111)

0 0 0 0 0
4

108

6

108

26

108
 0 0

2

108
 10

108
 0

8

108

10

108

42

108
 P(i+1|i=1000)

0 0 0 0
2

36

2

36

4

36

4

36
 0 0

2

36
 2

36

4

36

4

36

6

36

6

36
 P(i+1|i=1001)

0 0 0 0 0
4

36

2

36

6

36
 0

4

36

2

36
 6

36
 0

4

36

2

36

6

36
 P(i+1|i=1010)

0 0 0 0
2

12

2

12
 0 0

2

12

2

12
 0 0

2

12

2

12
 0 0 P(i+1|i=1011)

0 0
2

36

10

36
 0

4

36

4

36

16

36
 0 0 0 0 0 0 0 0 P(i+1|i=1100)

0 0
2

12

2

12

2

12

2

12

2

12

2

12
 0 0 0 0 0 0 0 0 P(i+1|i=1101)

0
4

12

2

12
 6

12
 0 0 0 0 0 0 0 0 0 0 0 0 P(i+1|i=1110)

2

4

2

4
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 P(i+1|i=1111)

Algorithm 1: specifying approximate compressors for different

columns of approximate multiplier

Let’s assume

 First, all of compressor (i,j) are exact

 i is number of stage and j is number of column

 k is the type of compressor

 N is the operand length

output: Assigning appropriate approximate compressors for

compressor (i,j)

--specifying appropriate AC6G compressors for upper columns

1: for i in [stage1, stage2, …,stage(𝐥𝐨𝐠𝟐 𝒏 − 𝟏)]

2: for j in [column (
𝟐×(𝟐𝒏−𝟏)

𝟑
+ 𝟏) to column (𝟐𝒏 − 𝟑)]

3: for k in [AC6G_1 to AC6G_16]

4: compressor(i,j) ⃪ k

5: if NMED(k) < NMED (k-1)

6: compressor(i,j) == k

7: else

8: compressor(i,j) == k-1

9: end if

10: end for

11: end for

12: end for

--specifying appropriate ACFGΙ and ACFGΙΙ compressors for

middle columns--

13: for i in [stage1, stage2, …,stage(𝐥𝐨𝐠𝟐 𝒏 − 𝟏)]

14: for j in [column (
𝒏

𝟐
+ 𝟏) to column (

𝟐×(𝟐𝒏−𝟏)

𝟑
)]

15: for k in [ACFGΙ_1 to ACFGΙ_4] --proposed-mul1

15: (for k in [ACFGΙΙ_1 to ACFGΙΙ_12]) --proposed-mul2

16: compressor(i,j) ⃪ k

17: if NMED(k) < NMED (k-1)

18: compressor(i,j) == k

19: else

20: compressor(i,j) == k-1

21: end if

22: end for

23: end for

24: end for

The proposed-mul1 structure is depicted in Fig. 9. The

compressors are numbered in Fig. 9, which are according to

Table III for ACFGI and Table II for AC6G compressors.

Since sum output of ACFGI compressors is constant and

equals to '1' in the middle columns, one of the final output

vectors is equal to '1'. Therefore, modified and simpler full-

adder and half-adder are used for sum of the two final vectors

as shown in Fig. 9. In [16], the structure of full adder and half

adder, with a constant '1' as input have been proposed.

According to [16], the implementation of the half adder only

requires one NOT gate, and the implementation of the full adder

only requires one XOR and one OR gate. According to Fig. 9,

CPD of proposed-mul1 is “tAND+2tAC6G+5tFA” which tAND, tAC6G

and tFA refers to delay of partial product generation step and

delay of AC6G compressor and delay of full-adder,

respectively.

C1

s
s

s
s

1

ACFGΙ

AC6G

444

4

444

4

4
4

4

4
4

2

2
3HAHA

C2

S1

S2S2 S2S2

S1 S1S1

C1 C1 C1

C2 C2 C2C

C

C

C

HA: half adder

Partial product

Omitted partial

product111 1 1ssss

FA: full adder

ACFGΙAC6G

HA1:half adder with

one ‘1’ input

FA1:full adder with

one ‘1’ input

12

14

77

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 : column number

C C C C C C C C C

Fig. 9. Structure of the proposed-mul1, which consists of ACFGI and ac6g

whose numbers according to table III and table II.

From Fig. 9, it can be seen that the partial products are shown

with a black dot covered by a red circle symbol, which are

omitted in the proposed-mul1 approximate multiplier based on

the definition of the ACFGI, see Table III. Elimination of

partial products has a significant impact on the hardware

optimization. Some of its compressors have less than four

inputs. Although earlier work has utilized exact half-adder and

full-adder instead of approximate compressors with fewer

inputs, the proposed multiplier uses approximate compressors

with one or two inputs equal to '0' to achieve an efficient

hardware multiplier.

Fig. 10 depicts the proposed-mul2 structure. ACFGII is used

for the middle columns, which are numbered according to Table

IV. According to Fig. 10, CPD of proposed-mul2 is “tAND + tHA

+ 9tFA”.

s
s

ACFGΙΙ

AC6G

111

1

111

1

1

1

5

5

1

11

11

10

12

7

14

HA7HA

C1

C2C

C

HA: half adder

Partial product

Omitted partial

product

sssssssss

FA: full adder

TruncatedACFGΙΙAC6G

C1

s
s

S1

S2S2 S2S2

S1 S1S1

C1 C1

C2 C2C2

C

C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 : column number

CCCCCCCCCC

Fig. 10. Structure of Proposed-Mul2 Which Consists of ACFGII and AC6G

Whose Numbers According to Table IV And Table II

From Fig. 10, it can be seen that many bits of the partial

products have not been used and included in the computations.

These bits are highlighted by black dots with a red circle and

labeled as the omitted partial product bits. Like proposed-mul1

method, the proposed-mul2 uses AC6G in its columns 11 to 13.

IV. EVALUATION AND COMPARISON

In this section, the proposed-mul1 and proposed-mul2 are

evaluated and compared to previous studies. To demonstrate the

accuracy and implementation metrics of the proposed-mul1 and

2, a FOM is introduced, which could highlight the tradeoff

between precision and hardware efficiency of the designs.

Moreover, to assess and verify the efficiency of the proposed

designs, they were evaluated via image multiplication,

sharpening, smoothing and edge detection.

A. Hardware analysis

 Table VI shows the synthesized results for circuit area,

critical path delay, power consumption and the power-delay

product (PDP) of the proposed-mul1, proposed-mul2,

Mul_1[13], Mul_2[13], Multiplier1[15], M8_1[21], M8_2[21],

Majority_based[16], C_full[19], M8[18], ALM_SOA[26] and

Exact designs. In this table, the delays are the minimum delay

at which the circuits can be synthesized. The simulation

condition is typical (25˚C and supply voltage is 0.9V). All

designs were described by VHDL (VHSIC Hardware

Description Language). Implementation metrics were

synthesized by the Synopsys Design Compiler (DC) using

28nm TSMC technology.

From the results presented in Table VI, it is obvious that both

proposed-mul1 and proposed-mul2 designs have superior

implementation metrics than other existing designs. This is due

to the simplicity of the proposed partial product generation and

reduction method that they use.
TABLE VI

HARDWARE RESULTS OF 8-BIT APPROXIMATE MULTIPLIERS

From Table VI, it can be seen that Mul_2 [13], demonstrates

the highest performance amongst existing methods reported in

the literature and both proposed -mul1 and mul2 achieve higher

performance than Mul_2[13], as follows.

 Moreover, the proposed-mul1 outperforms the mul_2[13] in

terms of the delay, power, area, PDP, and ADP by 31%, 53%,

43%, 67%, and 59%, respectively. In addition, the proposed-

mul2 also demonstrates higher performance to that of Mul_2

[13] in terms of the delay, power, area, PDP, and ADP by 23%,

53%, 42%, 64%, and 52%, respectively.

B. accuracy analysis

To assess and compare the performance of the proposed

approximate circuits with the existing methods, some

assessment metrics such as: error rate (ER), mean relative error

distance (MRED) and normalized mean error distance (NMED)

are used [28]. The definition of these metrics are as follows:

Error rate (ED) metric is the difference between the exact and

approximate output values, as shown in (9)

 𝐸𝐷 = |𝑀 − 𝑀′|
 (9)

where M, M' denote the exact and the approximate output

values and | | is the absolute value.

For an n-bit multiplier, the NMED can be calculated using

(11). To calculate NMED, the Mean ED (MED) is first

computed using (10). The NMED is the MED normalized by

the maximum output of the exact design. The gap between exact

and approximate outputs is more substantial than their relative

differences in many approximate applications involving the

human senses [16].

 𝑀𝐸𝐷 =
1

22𝑁
∑ 𝐸𝐷𝑖

22𝑁

𝑖=1
(10)

𝑁𝑀𝐸𝐷 =
1

22𝑁(2𝑁 − 1)2
∑ 𝐸𝐷𝑖

22𝑁

𝑖=1

 (11)

The MRED metric represents the average relative error and

can be calculated using (12):

 𝑀𝑅𝐸𝐷 =
1

22𝑁
∑

𝐸𝐷𝑖

𝑀𝑖

22𝑁

𝑖=1 (12)

where Mi is the exact value of the multiplication.

The ER represents the percentage of multiplications for

which the approximate design differs from its exact design

counterpart

MRED, ER, NMED and maximum ED metrics were

calculated for 8-bit multipliers by simulating all 65536 input

patterns using MATLAB software and tabulated in Table VII.

TABLE VII

ACCURACY RESULTS OF 8-BIT APPROXIMATE MULTIPLIERS
Max ED MRED NMED ER(%) Multipliers

9620 0.088 0.019 93.50 Mul_1[13]

8056 0.082 0.018 93.48 Mul_2[13]

4096 0.079 0.025 81.79 Multiplier1[15]

6936 0.060 0.019 72.59 M8_1[21]

1156 0.083 0.028 72.60 M8_2[21]

1950 0.438 0.007 99.81 Majority_based [16]

8264 0.007 0.003 19.02 C_full[19]

568 0.041 0.002 82.61 M8[18]

7670 0.055 0.013 98.80 ALM_SOA(M=5)

7120 0.509 0.018 99.93 Proposed-mul1

7148 0.151 0.017 98.86 Proposed-mul2

From Table VII it can be seen that M8 [18] demonstrates the

lowest NMED. It can be explained by the fact that the M8 uses

exact compressors for most significant columns of its

multiplier.

The C_full [19] method’s MRED and ER values are the

lowest amongst all methods. This can be explained by the fact

that there is no truncation in its design.

ADP
PDP

(fj)

Area

(um2)

Power

(uw)

Delay

(ns)
Multipliers

75.3 21.2 578.9 163.4 0.13 Mul_1[13]

72 20.3 554.0 155.8 0.13 Mul_2[13]

126.9 37.1 845.8 247.7 0.15 Multiplier1[15]

124 39.1 688.7 217.3 0.18 M8_1[21]

103.5 33.4 646.6 208.9 0.16 M8_2[21]

87 22.3 580.1 148.4 0.15 Majority_based[16]

168.8 57.8 804.0 275.2 0.21 C_full[19]

182.6 62.4 829.8 283.5 0.22 M8[18]

86.53 22.1 618.1 158.4 0.14 ALM_SOA(M=5)[26]

29.8 6.8 331.4 76.1 0.09 Proposed-mul1

34.4 7.3 318.5 73.4 0.10 Proposed-mul2

221.3 75.1 922.2 313.1 0.24 Exact

The proposed_mul1 demonstrates the highest ER and NMED

as some of its compressors generate a non-zero output when

their inputs are zero. The proposed-mul1 and proposed-mul2

have nearly similar NMED value compared to Mul_2[13].

The proposed Algorithm 1 was used to design the 16-bit

approximate multiplier structure. The results of both proposed

multipliers for 16-bit input operands are reported in Table VIII.

The results are obtained with 10 million operands with uniform

distribution. In comparison to 8-bit approximate multiplier, it is

found that employing compressors according to Algorithm 1 is

effective in reducing the amount of error metrics.
TABLE VIII

ACCURACY RESULTS OF 16-BIT APPROXIMATE MULTIPLIERS
MRED NMED ER(%) Multipliers

0.119 0.010 100 Proposed-mul1

0.066 0.009 99.98 Proposed-mul2

C. Image multiplication, sharpening, smoothing and edge

detection

The quality of the proposed multipliers is examined by

applying them in fault-tolerant applications. The two proposed

multipliers are used to multiply two images, sharpening,

smoothing and edge detection as the essential operations in

image processing. MATLAB programs is used to perform

image applications using the approximate multipliers. The Peak

Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM)

of the resulting image is used as a measure to assess the

performance of the multipliers. The PSNR metric is defined as:

 𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔 (
𝑚×𝑝×𝑀𝐴𝑋𝐼

2

∑ ∑ (𝐼(𝑖∙𝑗)−𝑘(𝑖∙𝑗))2𝑝−1
𝑗=0

𝑚−1
𝑖=0

)

(13)

Where m and p are the dimensions of the images. MAXI is the

maximum possible value of image pixels and, I(i,j) and k(i,j)

represents exact and approximate multiplication of two image

pixel at location of i, j. According to [35], the SSIM is defined

by (14).

 𝑆𝑆𝐼𝑀 =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2 +𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)

(14)

In most image processing applications, 30 dB is considered

as an acceptable value for the PSNR of the resulting images. As

the difference between the exact and approximate is not

distinguishable by the human eyes. The PSNR values are

reported for nine image multiplication examples in Table IХ.

From Table IХ, it can be seen that the resulting PSNRs of the

images of the proposed approximation methods are above

30dBs, while the proposed designs have significantly lower

hardware cost. The approximate 8-bit multiplier [18] exhibit the

highest PSNRs. This can be explained by the fact that this

method uses exact compressors for most significant columns of

its multiplier bits.

In the [13], [14] and [19] images smoothing and sharpening

are commonly used as applications to evaluate the effectiveness

of approximate multipliers. Table X displays the minimum,

maximum, and average PSNR and SSIM values. Nine images

(House, Fruits, Pirate, Blonde Woman, Lena, Boat,

Livingroom, Tank, Peppers) are examined to provide these

results.

The Sobel operator, utilized for edge detection also

implemented using the proposed multipliers. The Sobel

operator has several uses in computer vision for extracting basic

features [19].

To perform a more comprehensive study and a fair

comparison between hardware costs and error measurements,

this paper introduces a figure of merit (FOM) by multiplying

PSNR by the average of all hardware parameters delay, power

and area, as shown in (15):

𝐹𝑂𝑀 = 𝑃𝑆𝑁𝑅 ×

(
𝑑𝑒𝑙𝑎𝑦 𝑠𝑎𝑣𝑖𝑛𝑔 + 𝑎𝑟𝑒𝑎 𝑠𝑎𝑣𝑖𝑛𝑔 + 𝑝𝑜𝑤𝑒𝑟 𝑠𝑎𝑣𝑖𝑛𝑔

3
)

(15)

The PSNR value used in the FOM calculation represents the

average over all case studies. In [16], authors introduced a

FOM, which combines PSNR, delay saving and power saving

of the hardware. However, this FOM does not consider the area

saving of the hardware. The proposed FOM, defined by (15), of

the two proposed designs and references are depicted in Fig. 11.

From Fig. 11, it can be seen that the proposed_Mul1 and 2

methods have the highest FOM value, imply their superiority to

other methods.

TABLE IХ

THE PSNRS AND SSIM FOR IMAGE MULTIPLICATION OF 8-BIT APPROXIMATE MULTIPLIERS
Lake-color

×

airplane

mandril
×

mandril

House
×

tree

Tank
×

truck

Female
×

tree

Peppers
×

fruits

Lena
×

female

Peppers-color
×

Peppers-color

Lake
×

bridge
Multipliers

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR
0.844 29.76 0.930 28.64 0.915 29.97 0.929 36.15 0.927 29.94 0.827 30.24 0.835 31.39 0.866 34.01 0.918 30.48 Mul_1[13]

0.836 29.43 0.935 29.20 0.932 30.55 0.942 37.17 0.865 31.64 0.837 31.11 0.896 33.19 0.891 34.47 0.920 31.68 Mul_2[13]

0.869 23.20 0.889 24.60 0.881 24.85 0.940 35.19 0.936 27.67 0.784 28.56 0.828 30.26 0.748 29.47 0.930 27.87 Multiplier1[15]
0.874 31.10 0.917 30.34 0.931 31.19 0.930 36.02 0.852 31.90 0.828 32.03 0.847 31.93 0.853 34.02 0.937 32.20 M8_1[21]
0.850 28.42 0.848 24.40 0.854 28.53 0.913 33.29 0.915 27.16 0.788 28.44 0.812 28.72 0.808 28.38 0.929 29.49 M8_2[21]
0.974 40.42 0.988 39.51 0.970 40.90 0.958 41.10 0.969 40.85 0.967 40.10 0.971 40.17 0.970 41.37 0.977 41.13 Majority_based[16]

0.992 41.36 0.984 38.94 0.984 42.51 0.998 55.96 0.997 42.41 0.963 42.96 0.974 44.84 0.980 38.62 0.997 44.90 C_full[19]

0.997 50.72 0.999 46.53 0.997 50.20 0.997 50.97 0.997 49.91 0.996 50.54 0.997 49.87 0.997 49.54 0.998 50.15 M8[18]

0.886 32.13 0.957 31.52 0.942 31.57 0.905 35.38 0.908 34.60 0.825 30.52 0.859 31.38 0.858 30.42 0.958 35.01 ALM_SOA(M=5) [26]

0.871 30.97 0.950 31.49 0.910 31.08 0.913 36.16 0.870 31.90 0.856 32.62 0.904 32.92 0.917 33.44 0.922 32.72 Proposed-mul1

0.874 30.45 0.951 31.03 0.916 31.10 0.915 35.18 0.898 31.78 0.875 32.79 0.884 32.89 0.907 33.80 0.923 32.39 Proposed-mul2

Fig. 11. The Values of FOM for Approximate Multipliers

D. Neural Network Application

Another application of approximate multipliers is the

hardware implementation of neural networks. In the following,

the efficiency of the proposed multipliers in the hardware

implementation of neural networks has been examined and

compared with similar works. For this purpose, a multi-layer

perceptron (MLP) neural network and a convolution neural

network (CNN) have been implemented and the results of the

implementations are given in Table XI.

The implemented MLP neural network consists of two layers

with 700 neurons in the hidden layer and 10 neurons in the

output layer. This network is trained using the MNIST dataset

[36]. The implemented CNN also includes two convolution

layers and a fully connected layer in the output. This network is

trained using the SVHN dataset [37].

As Table XI shows, the proposed multipliers have a less than

one percent drop in accuracy compared to the exact multiplier.

Although the proposed multipliers are less accurate than the

existing multipliers in some cases, it is noteworthy that the

proposed multipliers provide high accuracy in the

implementation of both networks, while some previous

multipliers perform better in implementing one of the two

networks and worse in one another.

TABLE XI

ACCURACY OF 8-BIT APPROXIMATE MULTIPLIERS EMPLOYED IN

HARDWARE IMPLEMENTATION OF NEURAL NETWORKS
Accuracy

Multipliers
CNN MLP

81.5% 91.0% Mul_1[13]

82.9% 90.9% Mul_2[13]

84.7% 91.7% Multiplier1[15]

81.6% 91.1% M8_1[21]

84.5% 91.2% M8_2[21]

82.4% 88.7% Majority_based [16]

87.3% 91.7% C_full[19]

83.2% 89.9% M8[18]

79.8% 81.7% ALM_SOA(M=5)

87.7% 91.1% Proposed-mul1

88.1% 91.3% Proposed-mul2

88.6% 92.1% Exact

V. CONCLUSION

In this paper, a six-gate and two gate-free approximate

compressors were first introduced and then they were used to

developed two approximate multipliers. The probabilities in

partial product reduction were studied and used to develop more

efficient approximate compressors and multipliers’ structure.

Simulation results demonstrated that the application of the

probability could significantly improve the performance of the

approximate methods. The hardware analysis of the proposed

approximate methods, called proposed-mul1 and 2 show that

the proposed-mul1 outperforms 31%, 53%, 43%, 67%, and

59% the best existing methods in terms of delay, power, area,

PDP, and ADP, respectively. These terms are 23%, 53%, 42%,

64%, and 52% in terms of delay, power, area, PDP, and ADP,

respectively, for the proposed_mul2. Simulation results also

show that the proposed methods have accepted performance in

terms of accuracy for human perceptual based applications,

e.g., image. A FOM, which combines three hardware

parameters called delay saving, area saving and power saving

and PSNR, was proposed and used to assess the performance of

the proposed_mul1 and 2. The results show the merit of the

proposed techniques. The performance of the proposed

approximate multipliers in the hardware implementation of the

neural network has also been investigated. The simulation

results indicate the appropriate accuracy compared to the exact

multiplier in these applications. This result indicates that the

TABLE Х

THE PSNRS AND SSIM ACHIEVED FROM SHARPENING, SMOOTHING AND EDGE DETECTION WITH 8-BIT APPROXIMATE MULTIPLIERS
Edge detection Smoothing Sharpening

Multipliers SSIM PSNR SSIM PSNR SSIM PSNR

Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min
0.957 0.948 0.945 43.97 42.92 42.39 0.962 0.941 0.939 31.97 30.62 29.81 0.984 0.987 0.981 32.44 31.23 29.12 Mul-1[13]

0.957 0.947 0.912 44.31 42.67 41.74 0.981 0.984 0.974 37.89 33.95 34.78 0.984 0.988 0.983 35.40 33.95 32.12 Mul-2[13]

0.949 0.939 0.910 44.07 42.37 41.20 0.949 0.936 0.916 30.49 28.86 26.07 0.983 0.988 0.973 30.81 28.85 26.37 Multiplier1[15]
0.969 0.962 0.961 44.25 44.05 43.25 0.962 0.950 0.930 35.79 31.36 27.19 0.983 0.991 0.965 33.56 32.10 29.02 M8-1[21]
0.940 0.928 0.917 41.96 41.24 40.37 0.989 0.984 0.981 41.86 39.81 37.42 0.981 0.986 0.957 31.46 30.05 26.16 M8-2[21]
0.861 0.818 0.797 41.34 41.02 40.55 0.969 0.961 0.956 32.85 29.54 27.25 0.992 0.994 0.988 38.66 37.18 36.10 Majority-based[16]

0.995 0.994 0.991 54.00 53.21 50.93 0.995 0.993 0.991 56.89 46.64 42.89 0.998 0.999 0.991 51.76 47.26 39.70 C-full[19]

0.999 0.998 0.998 60.23 59.19 58.73 0.997 0.996 0.996 41.37 40.41 39.42 0.998 0.999 0.992 49.09 48.13 47.64 M8[18]

0.966 0.952 0.946 45.73 44.90 43.49 0.974 0.963 0.953 37.81 35.75 32.09 0.983 0.989 0.969 38.38 36.33 32.14 ALM-SOA(M=5) [26]

0.824 0.810 0.796 40.35 39.98 39.44 0.959 0.951 0.929 31.39 30.04 25.19 0.972 0.984 0.945 29.56 28.09 26.74 Proposed-mul1

0.979 0.973 0.965 47.68 46.36 45.62 0.962 0.956 0.951 27.71 26.24 25.60 0.980 0.986 0.967 31.28 29.32 27.51 Proposed-mul2

proposed multipliers can be used for artificial intelligence and

machine learning applications.

REFERENCES

[1] A. Wang, B. H. Calhoun, and A. P. Chandrakasan, Sub-threshold design

for ultra low-power systems. New York: Springer, 2011.

[2] V. Chippa, S. Chakradhar, K. Roy and A. Raghunathan, "Analysis and
characterization of inherent application resilience for approximate

computing", Proceedings of the 50th Annual Design Automation

Conference on - DAC '13, 2013.
[3] Q. Xu, T. Mytkowicz and N. Kim, "Approximate Computing: A Survey",

IEEE Design & Test, vol. 33, no. 1, pp. 8-22, 2016.
[4] M. Horowitz, "1.1 Computing's energy problem (and what we can do

about it)", 2014 IEEE International Solid-State Circuits Conference

Digest of Technical Papers (ISSCC), 2014.
[5] S. Timarchi and M. Fazlali, "Generalised fault-tolerant stored-unibit-

transfer residue number system multiplier for moduli set {2n−1, 2n,

2n+1}", IET Computers & Digital Techniques, vol. 6, no. 5, pp. 269-276,
2012.

[6] M. Fazlali, H. Valikhani, S. Timarchi and H. Malazi, "Fast architecture

for decimal digit multiplication", Microprocessors and Microsystems, vol.
39, no. 4-5, pp. 296-301, 2015.

[7] L. Rahimzadeh, M. Eshghi and S. Timarchi, "Radix-4 implementation of

redundant interleaved modular multiplication on FPGA", 2014 22nd
Iranian Conference on Electrical Engineering (ICEE), 2014.

[8] Khaing Yin Kyaw, Wang Ling Goh and Kiat Seng Yeo, "Low-power high-

speed multiplier for error-tolerant application", 2010 IEEE International
Conference of Electron Devices and Solid-State Circuits (EDSSC), 2010..

[9] S. Hashemi, R. Bahar and S. Reda, "DRUM: A Dynamic Range Unbiased

Multiplier for approximate applications", 2015 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2015.

[10] S. Ejtahed and S. Timarchi, "Efficient Approximate Multiplier Based on

a New 1-Gate Approximate Compressor", Circuits, Systems, and Signal
Processing, vol. 41, no. 5, pp. 2699-2718, 2022.

[11] C.-H. Chang, J. Gu, and M. Zhang, “Ultra Low-Voltage Low-Power

CMOS 4-2 and 5-2 Compressors for Fast Arithmetic Circuits,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 10,

pp. 1985–1997, 2004.

[12] A. Momeni, J. Han, P. Montuschi and F. Lombardi, "Design and Analysis
of Approximate Compressors for Multiplication", IEEE Transactions on

Computers, vol. 64, no. 4, pp. 984-994, 2015.

[13] M. Ahmadinejad, M. Moaiyeri and F. Sabetzadeh, "Energy and area
efficient imprecise compressors for approximate multiplication at

nanoscale", AEU - International Journal of Electronics and

Communications, vol. 110, p. 152859, 2019.
[14] O. Akbari, M. Kamal, A. Afzali-Kusha and M. Pedram, "Dual-Quality 4:2

Compressors for Utilizing in Dynamic Accuracy Configurable

Multipliers", IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 25, no. 4, pp. 1352-1361, 2017.

[15] S. Venkatachalam and S. Ko, "Design of Power and Area Efficient

Approximate Multipliers", IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 25, no. 5, pp. 1782-1786, 2017.

[16] F. Sabetzadeh, M. Moaiyeri and M. Ahmadinejad, "A Majority-Based

Imprecise Multiplier for Ultra-Efficient Approximate Image
Multiplication", IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 66, no. 11, pp. 4200-4208, 2019.

[17] M. Ha and S. Lee, "Multipliers With Approximate 4–2 Compressors and
Error Recovery Modules", IEEE Embedded Systems Letters, vol. 10, no.

1, pp. 6-9, 2018.

[18] P. Edavoor, S. Raveendran and A. Rahulkar, "Approximate Multiplier
Design Using Novel Dual-Stage 4:2 Compressors", IEEE Access, vol. 8,

pp. 48337-48351, 2020.

[19] A. Strollo, E. Napoli, D. De Caro, N. Petra and G. Meo, "Comparison and
Extension of Approximate 4-2 Compressors for Low-Power Approximate

Multipliers", IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 67, no. 9, pp. 3021-3034, 2020.

[20] H. Pei, X. Yi, H. Zhou and Y. He, "Design of Ultra-Low Power
Consumption Approximate 4–2 Compressors Based on the Compensation

Characteristic", IEEE Transactions on Circuits and Systems II: Express

Briefs, vol. 68, no. 1, pp. 461-465, 2021.
[21] M. Ansari, H. Jiang, B. Cockburn and J. Han, "Low-Power Approximate

Multipliers Using Encoded Partial Products and Approximate

Compressors", IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 8, no. 3, pp. 404-416, 2018.

[22] H. Mahdiani, A. Ahmadi, S. Fakhraie and C. Lucas, "Bio-Inspired

Imprecise Computational Blocks for Efficient VLSI Implementation of
Soft-Computing Applications", IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 57, no. 4, pp. 850-862, 2010.

[23] H. Jiang, C. Liu, F. Lombardi and J. Han, "Low-Power Approximate
Unsigned Multipliers With Configurable Error Recovery", IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 1, pp.

189-202, 2019.
 [24] G. Jain, M. Jain and G. Gupta, "Design of radix-4,16,32 approx booth

multiplier using Error Tolerant Application", 2017 6th International

Conference on Reliability, Infocom Technologies and Optimization
(Trends and Future Directions) (ICRITO), 2017.

[25] Y. Chang, Y. Cheng, S. Liao and C. Hsiao, "A Low Power Radix-4 Booth

Multiplier With Pre-Encoded Mechanism", IEEE Access, vol. 8, pp.
114842-114853, 2020.

[26] W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi and F. Lombardi, "Design

and Evaluation of Approximate Logarithmic Multipliers for Low Power
Error-Tolerant Applications", IEEE Transactions on Circuits and Systems

I: Regular Papers, vol. 65, no. 9, pp. 2856-2868, 2018.
[27] R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha and M. Pedram,

"RoBA Multiplier: A Rounding-Based Approximate Multiplier for High-

Speed yet Energy-Efficient Digital Signal Processing", IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,

no. 2, pp. 393-401, 2017.
[28] H. Jiang, C. Liu, N. Maheshwari, F. Lombardi, and J. Han, “A comparative

evaluation of approximate multipliers,” in Proc. Int. Symp. Nanosc.

Archit. (NANOARCH), pp. 191–196, 201

[29] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power digital
signal processing using approximate adders,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no.

1, pp. 124–137, 2013.

[30] Z. Aizaz and K. Khare, “Area and power efficient truncated booth

multipliers using approximate carry-based error compensation,” IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 2,
pp. 579–583, 2022.

[31] V. Leon, G. Zervakis, D. Soudris, and K. Pekmestzi, “Approximate hybrid

high radix encoding for energy-efficient inexact multipliers,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26,

no. 3, pp. 421–430, 2018.

[32] P. Yin, C. Wang, H. Waris, W. Liu, Y. Han, and F. Lombardi, “Design
and analysis of energy-efficient dynamic range approximate logarithmic

multipliers for machine learning,” IEEE Transactions on Sustainable

Computing, vol. 6, no. 4, pp. 612–625, 2021.
[33] A. Amirany, G. Epperson, A. Patooghy, and R. Rajaei, “Accuracy-adaptive

spintronic adder for Image Processing Applications,” IEEE Transactions

on Magnetics, vol. 57, no. 6, pp. 1–10, 2021.
[34] R. Rajaei and A. Amirany, “Nonvolatile low-cost approximate spintronic

full adders for computing in memory architectures,” IEEE Transactions

on Magnetics, vol. 56, no. 4, pp. 1–8, 2020.

[35] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality

 assessment: From error visibility to structural similarity,” IEEE Trans.

Image Process., vol. 13, no. 4, pp. 600 600–612, Apr. 2004.
[36] “The mnist database,” MNIST handwritten digit database, Yann LeCun,

Corinna Cortes and Chris Burges. [Online]. Available:

http://yann.lecun.com/exdb/mnist.
[37] The street view house numbers (SVHN) dataset. [Online]. Available:

http://ufldl.stanford.edu/housenumbers.

