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Abstract— Approximate computing is a promising approach 

for reducing power consumption and design complexity in 

applications that accuracy is not a crucial factor. Approximate 

multipliers are commonly used in error-tolerant applications. This 

paper presents three approximate 4:2 compressors and two 

approximate multiplier designs, aiming at reducing the area and 

power consumption, while maintaining acceptable accuracy. The 

paper seeks to develop approximate compressors that align 

positive and negative approximations for input patterns that have 

the same probability. Additionally, the proposed compressors are 

utilized to construct approximate multipliers for distinct columns 

of partial products based on the input probabilities of the two 

compressors in adjacent columns. The proposed approximate 

multipliers are synthesized using the 28nm technology. Compared 

to the exact multiplier, the first proposed multiplier improves 

power×delay and area×power by 91% and 86%, respectively, 

while the second proposed multiplier improves the two parameters 

by 90% and 84%, respectively. The performance of the proposed 

approximate methods was assessed and compared with the 

existing methods for image multiplication, sharpening, smoothing 

and edge detection. Also, the performance of the proposed 

multipliers in the hardware implementation of the neural network 

was investigated, and the simulation results indicate that the 

proposed multipliers have appropriate accuracy in these 

applications. 

 

Index Terms—Approximate Computing, Multiplier, 4:2 

Compressor, Low-Power Design, Image Processing. 

I. INTRODUCTION 

inimizing power consumption has become a significant 

challenge for preserving lifetime and reliability due to the 

fast increase of integrated circuits’ density. In addition, power 

consumption is a major consideration for portable devices [1]. 

Approximate computing units has demonstrated to be a 

promising and viable approach in achieving low-power design 

[5]-[7]. Approximate computing can be employed in error-

tolerable applications in which the occurrence of inaccuracy 

does not affect the results, e.g, multimedia processing [33]-[34], 

machine learning [2]-[3], and data mining [4]. These 

applications have intensive multiplication operations. 

Multiplier is one of the basic circuits in processors and is known 

as a power-hungry unit [4]. A multiplier involves three steps: 

 1) partial product generation 

 2) partial product reduction 

 3) final addition 

Depending on which step or steps are approximated, various 

categories of approximate multipliers exist. Some schemes are 

focused on simplification of partial products generation [8], [9], 

[30], [31]. In [8], the operands are split into two equal-sized 

parts: multiplication and non-multiplication parts. In the 

multiplication part, multiplication is performed  conventionally, 

while in non-multiplication part, the operation is performed 

from the most to the least significant bits. If at least one bit 

equals '1', all other bits of output are set to '1'.  In [9], the authors  

introduced  the so-called dynamic range unbiased multiplier. 

Their method first identifis the most significant '1'  using a 

leading ‘1’ detector block, and then a subsequent k-bit is 

considered as operand. Ref. [30] presented a truncation-based 

Booth multiplier with a compensation block, which has a 

variable truncation factor. By simplification and approximation 

of the partial product generation, [31] developed an 

approximate hybrid high-radix encoding. In the method, the 

most significant bits (MSBs) of the multiplicand are encoded 

using radix-4 encoding, while the k least significant bits (LSBs) 

are encoded by radix-2k. 

The partial product reduction is known as the step that 

contributes more area and power consumption than others [11]. 

Significant research on reducing the hardware costs associated 

with the second multiplication step has been reported in the 

literature and it has been shown that using compressors to create 

more efficient circuitry is one of the viable options [18]. In [10]-

[21], approximate compressors for partial products reduction 

were reported, where the proposed methods achieved different 

degrees of accuracy and cost reduction. 

Other methods for partial product reduction were reported in 

[22] and [23]. In [22], an approximate multiplier, also known as 

a broken-array multiplier, was reported. Ref. [29] provided 

approximate adders that is used for additions required in 

multiplication for DSP applications 

 In [23], an approximate multiplier was introduced which 

designed approximate adders by cutting the carry propagation 

chain and incorporating a parallel error recovery section,  

There are also other approaches for designing approximate 

multipliers as presented in [24]-[27], and [32]. Approximate 

booth encoding is another approximation method presented in 

[24] and [25]. In [26], inexact adders were used to compute the 
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summation of the mantissa using logarithmic multipliers. In 

[32], an approximate logarithmic multiplier was presented by 

truncating the operation and compensating the error of adders. 

Performing multiplication using a shifter, adder, and subtractor 

was proposed in [27]. To further reduce the power consumption 

and design complexity, this paper proposes three approximate 

4:2 compressors and two approximation multipliers. The 

contributions of this paper are as follow: 

• Proposing three approximate 4:2 compressors.  

o Analyzing the probabilities of the 

compressor’s output for stage one of 

partial product reduction.  

o Presenting a new technique for designing 

an approximate compressor, which is 

based on using equal positive and negative 

approximation for compressor’s input 

patterns that have equal probabilities. 

• Proposing two new approximate unsigned 

multipliers. 

o Describing how the compressors in the 

adjacent columns of multiplier’s structure 

affects error performance by examining 

the probabilities. 

o Proposing a new method for utilizing 

appropriate compressors for different 

columns of approximate multiplier to 

reduce the error.  

The approximate multipliers were described in VHDL for 8-

bit operands and synthesized by design compiler (DC) tool with 

28 nm TSMC technology. The accuracy and quality metrics 

were computed using MATLAB software. The two proposed 

multipliers were used for image multiplication, image 

sharpening, smoothing, and edge detection. It is also essential 

to consider both hardware performance and quality parameters 

for a fair comparison. So, in this paper, a Figure of Merit (FOM) 

was used which considers both quality and efficiency factors. 

The use of the FOM assures that there is a satisfactory trade-off 

between quality and efficiency. 

The rest of the paper is organized as follows: Section II 

explains exact 4:2 compressors and briefly reviews previous 

approximate 4:2 compressors. Section III introduces the 

designing technique and proposed schemes in details, including 

the proposed compressor and multiplier structures. An 

evaluation and comparison of the two proposed multipliers with 

the state-of-the-art methods are presented in Section IV. The 

evaluation section includes the implementation parameters, 

accuracy metrics, and results of image multiplication 

sharpening, smoothing, edge detection and neural network 

application which includes multi-layer perceptron (MLP) 

neural network and a convolution neural network (CNN). 

Ultimately, Section V concludes the paper.  

II. BACKGROUND 

Compressors are widely used in multipliers to speed up the 

partial product reduction process. They come in a variety of 

topologies, including 7:2, 5:2, and 4:2. However, the 4:2 

compressor is more common. A conventional implementation 

of the exact 4:2 compressor comprises cascaded full adders, as 

shown in Fig. 1 [11] and its outputs are calculated by (1), (2), 

and (3).  

𝑠𝑢𝑚 = 𝑥1 ⊕ 𝑥2⨁𝑥3⨁𝑥4⨁𝑐𝑖𝑛 
(1) 

𝑐𝑎𝑟𝑟𝑦 = (𝑥1 ⊕ 𝑥2⨁𝑥3⨁𝑥4) ∙ 𝑐𝑖𝑛

+ (𝑥1 ⊕ 𝑥2⨁𝑥3⨁𝑥4
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) ∙ 𝑥4 

(2) 

𝐶𝑜𝑢𝑡 = (𝑥1 ⊕ 𝑥2) ∙ 𝑥3 + (𝑥1 ⊕ 𝑥2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) ∙ 𝑥1      

(3) 

Full adder

Full adder

x1 x2 x3 Cinx4

Cout carry sum
 

Fig. 1. Structure of The Exact 4:2 Compressor [11]. 

where Cin, Cout, and sum are input carry, output carry and sum 

of a 4:2 compressor, respectively. Cin is taken from the 

compressor in the lower significant position, whereas Cout goes 

to the compressor in the higher significant position. 

Several efficient approximate 4:2 compressors designs 

aiming at reducing the complexity of exact compressor have 

been reported in the literature [10], [12]-[23]. In [12], two 

approximate compressors were proposed where the first one is 

based on inserting errors in the truth-table of the exact 4:2 

compressor and the second one is based on ignoring the Cin and 

Cout. The second method was further expanded by other 

researchers.  

An approximate 4:2 compressor made of a single OR gate 

was introduced in [10]. In [13], authors presented an 

approximate 4:2 compressor, which  produces  a 21% error rate 

in the truth table. This method was then extended to design a 

5:2 compressor. Four reconfigurable dual-quality compressors 

with the ability to operate in either precise or approximate mode 

were introduced in [14], where each of their unused circuit 

modes are turned off using a power gating technique. In [15], 

partial products are converted into more likely and 

unlikely terms and then an approximate 4:2 compressor, a full 

adder and a half adder were proposed based on this concept. In 

[16], the majority function was used to define carry, while the 

sum is constant and equal to '1', and FinFET was used to build 

the approximate 4:2 compressor in transistor level. In [17], an 

approximate 4:2 compressor and an error recovery module for 

compensating generated negative errors was introduced. In 



 

 

[18], the authors presented two approximate 4:2 compressors, 

where one of them is a modified dual-stage compressor and its 

designed truth table contains equal number of +1 and -1 errors. 

In [19], an approximate compressor based on the stacking 

circuit concept was reported. In [20], three approximate 

compressors were developed by designing just sum output, 

which results in generating negative error distances in the truth 

table. So, an error-correcting module was employed for 

compensation of the negative approximation. In [21], the 

authors reported the design of two structure 4×4 multiplier with 

an approximate 4:2 compressor through preprocessing partial 

products, where larger multipliers were constructed by the 

given 4×4 multiplier.  

III. PROPOSED SCHEMES 

The proposed scheme consists of four sections. The first two 

sections describe the proposed design technique of compressors 

and three approximate 4:2 compressors based on the proposed 

design technique. In the next two sections, a new approach for 

multiplier structure as well as two new approximate unsigned 

multiplier structures are presented. 

A. Proposed technique for designing approximate 

compressors 

This section attempts to analyze the parameters that influence 

the accuracy of an approximate compressor and then proposes 

an approach to explore a new design. The efficiency of an 

approximate compressor can be analyzed by applying it to a 

multiplier structure. Fig. 2 is commonly used to represent an 8-

bit unsigned multiplier. Two stages are depicted in Fig. 2: stage 

1 and stage 2. 
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Fig. 2. Overall structure of proposed an 8-bit multiplier. 

Assuming uniform distribution for input operands of the 

multiplier, the probability of compressors input in stage 1 can 

be calculated. However, it is not clear for compressors in stage 

2, because it is contingent on the approximate compressor’s 

structure. So, this section focuses on the probability of the 

output derived from stage 1.  

Let's assume P0 be the probability that the compressor output 

is exact also, P+ and P- signify the probabilities of compressor 

output with positive and negative approximation, respectively. 

In this scenario, placing two compressors in one column, for 

example in columns 7 through 10, results in three different 

Error Distance (ED) with absolute values of 0, 1, and 2, where 

ED is the difference between the correct and incorrect output. 

Fig. 3 summarizes all conceivable output states’ combinations 

of two compressors in one column, and their corresponding 

absolute ED.  

0P+P-P

0P+P-P0P0P +P+P -P-P

ED=0ED=1ED=1ED=1ED=2ED=0ED=1ED=0ED=2

P0 : exact output probability

P+ : positive approximated output probability

P- : negative approximated output probability

 
Fig. 3. States of absolute ED resulting of two compressors in one column 

at stage1. 

According to the EDs, shown at the bottom of the Fig. 3, 

under three conditions, the sum of EDs of two compressors in 

the same column becomes zero. One of the conditions is when 

both compressor’s outputs are exact, where the probability of 

this condition equals P0×P0=P0
2. Besides, if the probability of 

the first (and the second) compressor’s outputs has opposite 

signs (P+ and P-), the generated ED will be zero with the 

probability of 2×(P+×P-). Here, the probability of the correct 

output for a column at stage 1 is given by P (ED=0), which 

equals the sum of all the three conditions’ probabilities, where 

ED is zero. Equation (4) defines ∑ 𝑃(ED = 0). According to 

the probability concepts, (5) is also established. 

 

∑ 𝑃(ED = 0) = 𝑃0
2 + 2 × (𝑃+ × 𝑃−) 

(4) 

𝑃0 + 𝑃+ + 𝑃− = 1 
(5) 

A well-designed approximate multiplier maximizes 

∑ 𝑃(ED = 0). This means that P0 must be as high as possible 

or P+=P- in order to maximize ∑ 𝑃(ED = 0). 

Let's assume that the probability of a positive or negative 

outcome is denoted using the notation pi+ and pi- for each of the 

16 input patterns of 4:2 compressor.  The ED for each pattern is 

represented by EDi. So, the positive and negative 

approximation probabilities of the compressor output can be 

determined using equation (6) and (7), respectively. Equations 

(6) and (7) must be equal to set the condition P+=P-. 

 

∑(𝑝𝑖+ × 𝐸𝐷𝑖) = 𝑃+ 
(6) 

∑(𝑝𝑖− × 𝐸𝐷𝑖) = 𝑃− 
(7) 

Consequently, it is necessary to know the probability of the 

compressor’s inputs to reduce the multiplication error. The 

compressor’s inputs at stage 1 are partial products, which are 

generated by an AND gate. By assuming a uniform distribution 

of the multiplier’s inputs, the probability of the partial product 

to be '0' or '1' is 3/4 and 1/4, respectively. For example, the 

probability of '0001' is (
3

4
×

3

4
×

3

4
×

1

4
=

27

256
). A categorization 



 

 

based on the probability of each of the 16 input patterns labeled 

as x1x2x3x4 is illustrated in Table I. The input patterns that have 

the same compressor’s output are grouped together, as 

explained in [20].  
TABLE I 

PROBABILITY OF OCCURRENCE OF INPUTS AND GROUPING OF INPUTS 
Probability of each input in 

the group x1x2x3x4 
Grouping 

No. 
81/256 0000 first 
27/256 0001,0010,0100,1000 second 
9/256 0011,1100,0101,1010,0110,1001 third 
3/256 0111,1110,1011,1101 fourth 
1/256 1111 fifth 

Since each group of inputs has the same probability, P+=P- 

can be established by considering of equal positive and negative 

EDi in each input group. So, an equal negative and positive 

approximations to each input group in the proposed 

approximate 4:2 compressor will be applied. Further 

information about the importance of using both positive and 

negative approximation in the truth table for compressors 

development can be found in [13] and [18]. However, the AND 

gates in stage 1 does not generate equal probability for the 

compressor inputs, as explained in [18].  The probabilities of 

the input are not equal, as shown in Table I, which is in contrast 

to [18].  

B. Three proposed approximate compressors 

The proposed schemes do not include the Cin and Cout, similar 

to existing approximate compressor. The proposed compressors 

are categorized according to the number of gates that they have. 

They are proposed as follows:  

1) Approximate Compressors with 6 Gate (AC6G) 

2) Approximate Compressors Free Gate I (ACFGI) 

3) Approximate Compressor Free Gate II (ACFG II) 

 

I. AC6G design 

An important design consideration for this compressor is 

assuming that P+=P- as mentioned in section A. The 

compressors in the same category of the proposed AC6G design 

are listed in Table II. Using input permutation, 16 compressors 

in this category can be created. The compressors are denoted by 

the notation AC6G-n, where n is the compressor number.  

As an example, AC6G-12 Karnaugh map has been shown in 

Fig. 4, where Fig 4a and b show Karnaugh map of output sum 

and carry, respectively and Fig. 4c shows the used 

approximation for input patterns. The first to fifth groups of the 

inputs are shown in black, green, blue, red, and yellow colour, 

respectively. Seven input patterns from third and fifth group are 

approximated. P+=P- is set for the third group of the inputs, 

while the fifth group is approximated due to the absence of the 

Cin and Cout. The compressors in AC6G category have the 

highest accuracy compared with the two other proposed 

category due to the well-established condition P+= P-. 

According to (2), Critical Path Delay (CPD) of exact 

compressor is “2tXOR+tAND+tOR”, where tXOR, tAND and tOR is the 

delay of 2-input XOR, AND and OR gates, respectively. CPD 

of AC6Gs equals to ”2×tOR+tAND”. 
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x3x4

0 1 1 1

1 1 1 1

1 1

1 1

1

1

1

1

 

x3x4

x1x2

0

0

1

0 0

1

01

1

1

0

0

1

1

1

0

 

x3x4

0 0 +1 0
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0 -1 0

+1 0 -1

-1

0

x1x2

 
(a) (b) (c) 

Fig. 4. Karnaugh map for AC6G-12. a) sum output. b) carry output. c) the 

approximation used for input patterns. 
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Fig. 5. The gate schematic of the AC6G-12 

 
TABLE II 

OUTPUTS OF ALL ACF6G COMPRESSORS 

carry sum Compressors No. 

(𝑥1 ∙ (𝑥3 + 𝑥4)) + (𝑥2 ∙ 𝑥3) (𝑥1 + 𝑥2) + (𝑥3 + 𝑥4) AC6G-1 

(𝑥1 ∙ (𝑥3 + 𝑥4)) + (𝑥2 ∙ 𝑥4) (𝑥1 + 𝑥2) + (𝑥3 + 𝑥4) AC6G-2 

(𝑥1 ∙ (𝑥3 + 𝑥4)) + (𝑥3 ∙ 𝑥4) (𝑥1 + 𝑥2) + (𝑥3 + 𝑥4) AC6G-3 

(𝑥2 ∙ (𝑥3 + 𝑥4)) + (𝑥1 ∙ 𝑥3) (𝑥1 + 𝑥2) + (𝑥3 + 𝑥4) AC6G-4 

(𝑥2 ∙ (𝑥3 + 𝑥4)) + (𝑥1 ∙ 𝑥4) (𝑥1 + 𝑥2) + (𝑥3 + 𝑥4) AC6G-5 

(𝑥2 ∙ (𝑥3 + 𝑥4)) + (𝑥3 ∙ 𝑥4) (𝑥1 + 𝑥2) + (𝑥3 + 𝑥4) AC6G-6 

(𝑥3 ∙ (𝑥1 + 𝑥2)) + (𝑥1 ∙ 𝑥2) (𝑥1 + 𝑥2) + (𝑥3 + 𝑥4) AC6G-7 

(𝑥4 ∙ (𝑥1 + 𝑥2)) + (𝑥1 ∙ 𝑥2) (𝑥1 + 𝑥2) + (𝑥3 + 𝑥4) AC6G-8 

(𝑥1 ∙ (𝑥2 + 𝑥4)) + (𝑥2 ∙ 𝑥3) (𝑥1 + 𝑥3) + (𝑥2 + 𝑥4) AC6G-9 

(𝑥1 ∙ (𝑥2 + 𝑥4)) + (𝑥3 ∙ 𝑥4) (𝑥1 + 𝑥3) + (𝑥2 + 𝑥4) AC6G-10 

(𝑥3 ∙ (𝑥2 + 𝑥4)) + (𝑥1 ∙ 𝑥2) (𝑥1 + 𝑥3) + (𝑥2 + 𝑥4) AC6G-11 

(𝑥3 ∙ (𝑥2 + 𝑥4)) + (𝑥1 ∙ 𝑥4) (𝑥1 + 𝑥3) + (𝑥2 + 𝑥4) AC6G-12 

(𝑥1 ∙ (𝑥2 + 𝑥3)) + (𝑥2 ∙ 𝑥4) (𝑥1 + 𝑥4) + (𝑥2 + 𝑥3) AC6G-13 

(𝑥1 ∙ (𝑥2 + 𝑥3)) + (𝑥3 ∙ 𝑥4) (𝑥1 + 𝑥4) + (𝑥2 + 𝑥3) AC6G-14 

(𝑥4 ∙ (𝑥2 + 𝑥3)) + (𝑥1 ∙ 𝑥2) (𝑥1 + 𝑥4) + (𝑥2 + 𝑥3) AC6G-15 

(𝑥4 ∙ (𝑥2 + 𝑥3)) + (𝑥1 ∙ 𝑥3) (𝑥1 + 𝑥4) + (𝑥2 + 𝑥3) AC6G-16 

 

This paper focuses on the design of compressors with nearly 

equal positive and negative approximations for the input 

groups.  There is a trade-off between designing an efficient 

hardware and verifying P+=P-. Since reducing the cost of the 

hardware is a fundamental design objective, it is aimed to 

achieve a free gate compressor, where condition P+=P- is met 

for as many inputs as possible for the two proposed 

compressors, named: ACFGI and ACFGII. 

II. ACFGI design 

The ACFGI outputs’ equations are tabulated in Table III. 

Carry output corresponds to one of the inputs, whereas its sum 

output is equal to '1'. Four distinct compressor designs can be 

generated from the information tabulated in Table III by 

permutation input.  

As an example, the Karnaugh map of the ACFGI-4 is shown 

in Fig. 6. 

 



 

 

TABLE II 
OUTPUTS OF ALL ACFGI COMPRESSORS 

carry sum Compressors No. 

x1 1 ACFGΙ-1 

x2 1 ACFGΙ-2 

x3 1 ACFGΙ-3 

x4 1 ACFGΙ-4 

 

x1x2

x3x4

1 1 1 1

1

1

1 1

1 1 1

1 1 1

1 1

 

x1x2
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1 1 00

1 1 0

1 1 0

1 1 0

0

0

x3x4

 

x3x4
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+1 0 -1

-1

0

x1x2

 
(a) (b) (c) 

Fig. 6. Karnaugh map of ACFGΙ-4. a) sum output. b) carry output. c) the 

approximation used for the input patterns. 

In the design of this compressor, achieving low hardware is 

a priority, so P+=P- is confirmed only for the third input group. 

Despite its lack of high accuracy, this compressor is the most 

efficient candidate for low-cost implementation. Since sum 

output is a constant value of '1', the final addition step in the 

multiplier is simplified. This compressor is appropriate for 

applying to the least significant partial product columns.  

III. ACFGII design 

 The output equations of the ACFGΙΙ designs are tabulated in 

Table IV. From this table, it can be seen that twelve distinct 

compressors with a slightly different set of input permutations, 

can be developed. However, one of the possible compressors 

have been reported in [14]. Hence, this paper explores all 

possible ACFGII compressors and their use in multipliers. 
TABLE IV 

OUTPUTS OF ALL ACFGII COMPRESSORS 

carry sum Compressors No. 

x2 x1 ACFGΙΙ-1 

x3 x1 ACFGΙΙ-2 

x4 x1 ACFGΙΙ-3 

x1 x2 ACFGΙΙ-4 

x3 x2 ACFGΙΙ-5 

x4 x2 ACFGΙΙ-6 

x1 x3 ACFGΙΙ-7 

x2 x3 ACFGΙΙ-8 

x4 x3 ACFGΙΙ-9 

x1 x4 ACFGΙΙ-10 

x2 x4 ACFGΙΙ-11 

x3 x4 ACFGΙΙ-12 
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1
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(a) (b) (c) 

Fig. 7. Karnaugh map for ACFGII-1. a) sum output. b) carry output. c) 

approximation used for input patterns 

ACFGII-1’s compressor’s Karnaugh map is shown in Fig. 7. 

From Fig. 7(a) and (b), the sum and carry have equal ones in 

their Karnaugh maps. From Fig. 7(c), the ACFGII-1 represents 

ten inputs’ approximations, where the input ‘0000’ has the 

highest probability values and it is not approximated. 

Therefore, ACFGII generates higher performance in terms of 

accuracy in comparison to ACFGI.    

C. Proposed technique for designing approximate multiplier 

In this paper different compressors for adjacent partial 

product column are used. The input probability of the two 

compressors in the two columns of the partial products is first 

studied. The proposed design approach for creating the 

multiplier’s structure is then explained.  

Fig. 8 shows the first stage of the 8-bit multiplier with its two 

operands: A and B. Two compressors in columns 4 and 5 have 

been highlighted by red color to analyze their behavior as an 

example of adjacent compressors. 

b0a7 b0a6 b0a5 b0a4 b0a3 b0a2 b0a1 b0.a0

b1a7 b1a6 b1a5 b1a4 b1a3 b1a2 b1a1 b1a0

b2a7 b2a6 b2a5 b2a4 b2a3 b2a2 b2a1 b2a0

b3a7 b3a6 b3a5 b3a4 b3a3 b3a2 b3a1 b3a0

b4a7 b4a6 b4a5 b4a4 b4a3 b4a2 b4a1 b4a0

b5a7 b5a6 b5a5 b5a4 b5a3 b5a2 b5a1 b5a0

b6a7 b6a6 b6a5 b6a4 b6a3 b6a2 b6a1 b6a0

b7a7 b7a6 b7a5 b7a4 b7a3 b7a2 b7a1 b7a0
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Fig. 8. Stage 1 of the 8-bit multiplier. 

 

Regardless of their operand’s lengths, there is a relation 

between two adjacent columns in multipliers, e.g., if both b0a3 

and b1a2 in column 4 are equal to '1', it implies that both a3 and 

b1 have value of 1. So, it is reasonable to assume that b1a3 in 

column 5 must have value of '1'. Hence, it can be concluded that 

the inputs of the compressor in neighboring columns are 

dependent. 

Let's assume having two compressors, one in column i and 

another in column i+1. If one of the 16 input patterns occurs in 

column i, the probability of some inputs occurring in column 

i+1 is zero. Additionally, the probability of some of the input 

patterns is higher than others due to their mentioned 

dependencies. As a result, if one of the input patterns occurs in 

column i, the probabilities cannot be obtained using given 

information in Table I. Hence, the conditional probabilities for 

patterns occurrences have been calculated from the multiplier 

simulation using MATLAB software and tabulated in Table V.  

For instance, if the compressor input in column i is "0001", 

then P(i+1|i=0001) gives the probability of all possible input 

patterns in column i+1. Based on presented information in 

Table V, if an input pattern from the nth (1≤n≤5) input group 

occurs in column i of a compressor, the same input pattern is 

most probably among inputs of the nth group in column i+1. 

For example, if the compressor input in column i is equal to 

group belongs to '0001'.  It worth to mention that Table I 

represents probabilities of all input patterns in a group that have 

the same probability, while Table V represents, conditional 

occurrence probabilities of the input patterns and if a pattern 

occurs in column i, the groups do not have the same probability 

in column i+1. '0001' (an input from the second group), then in 



 

 

column i+1, the highest probability input compared to other 

inputs of second  

The design principle deduced from Table V is that if the 

compressor input in column i is approximated, then that input 

in column i+1 must be calculated accurately or approximated 

by the opposite sign. It is possible to get close to approximations 

with opposite signs by using proposed compressors with input 

permutations for columns i and i+1. 

The proposed multiplier structures utilize a range of 

compressors with different approximations following the result 

of Table V. Since the proposed design guideline is generic, a 

trial-and-error method is required to determine the appropriate 

position for the compressors to reduce the total error of 

multiplier. 

 Algorithm 1 describes the proposed method in multipliers 

implementation. It is also notable that since the process of 

creating partial products in a multiplier of any size is the same, 

the probabilities given in Table V for a multiplier of size n are 

true and proposed design can be easily generalized to n-bit 

multipliers. The first four columns of proposed multipliers are 

truncated. For proposed-mul1 and proposed-mul2, respectively, 

ACFGΙs and ACFGΙΙs are utilized, while AC6Gs are used in 

the upper columns for both proposed multipliers. As a result, 

algorithm is started by figuring out which AC6Gs should be 

located in the upper columns then taking into account the 

interdependency between columns, appropriate compressors 

for the middle columns are chosen. To begin, exact compressors 

are arranged in a multiplier structure, and then the compressor 

for column 11 is chosen by swapping in all 16 compressors and 

comparing their NMED parameters to get the lowest value. The 

same process is repeated for other upper column. The 

aforementioned procedure has been also used to establish the 

best arrangement of compressors for the middle columns. 

For general n-bit multiplier, similar to the proposed 8-bit 

multiplier described above, the columns are partitioned into 

three sections. The truncated section includes column 1 to n/2. 

The middle columns are ((n/2)+1) to ((3n/2)-1) and the upper 

columns include column (3n/2) to (2n-3). 

D. Two Proposed approximate 8-bit multipliers’ structures 

This section describes the structures of the two proposed 

approximate multipliers, called proposed-mul1 and proposed-

mul2. In the multipliers, four least significant columns of partial 

products are eliminated. The AC6Gs are used for eleventh to 

thirteenth column because of their great precision. The ACFGIs 

and ACFGIIs are used for columns 5 to 10 in the proposed-mul1 

and proposed-mul2. 

TABLE V 
OCCURRENCE PROBABILITY OF COLUMN I+1 INPUTS ACCORDING TO COLUMN I INPUTS  
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Algorithm 1: specifying approximate compressors for different 

columns of approximate multiplier 

Let’s assume  

                        First, all of compressor (i,j) are exact 

                        i is number of stage and j is number of column 

                        k is the type of compressor 

                        N is the operand length 

output: Assigning appropriate approximate compressors for 

compressor (i,j)  

--specifying appropriate AC6G compressors for upper columns 

1:   for i in [stage1, stage2, …,stage(𝐥𝐨𝐠𝟐 𝒏 − 𝟏)] 

2:         for j in [column (
𝟐×(𝟐𝒏−𝟏)

𝟑
+ 𝟏) to  column (𝟐𝒏 − 𝟑)] 

3:                for  k in [AC6G_1 to AC6G_16] 

4:                           compressor(i,j) ⃪ k 

5:                           if NMED(k) < NMED (k-1) 

6:                               compressor(i,j) == k 

7:                           else  

8:                               compressor(i,j) == k-1 

9:                           end if 

10:             end for 

11:     end for 

12: end for  

--specifying appropriate ACFGΙ and ACFGΙΙ compressors for 

middle columns-- 

13:   for i in [stage1, stage2, …,stage(𝐥𝐨𝐠𝟐 𝒏 − 𝟏)] 

14:         for j in [column (
𝒏

𝟐
+ 𝟏) to column (

𝟐×(𝟐𝒏−𝟏)

𝟑
)] 

15:             for  k in [ACFGΙ_1 to ACFGΙ_4]    --proposed-mul1 

15:            (for k in [ACFGΙΙ_1 to ACFGΙΙ_12]) --proposed-mul2                                   

16:                               compressor(i,j) ⃪ k 

17:                           if NMED(k) < NMED (k-1) 

18:                               compressor(i,j) == k 

19:                           else  

20:                               compressor(i,j) == k-1 

21:                           end if 

22:             end for 

23:     end for 

24: end for  

 

The proposed-mul1 structure is depicted in Fig. 9. The 

compressors are numbered in Fig. 9, which are according to 

Table III for ACFGI and Table II for AC6G compressors. 

Since sum output of ACFGI compressors is constant and 

equals to '1' in the middle columns, one of the final output 

vectors is equal to '1'. Therefore, modified and simpler full-

adder and half-adder are used for sum of the two final vectors 

as shown in Fig. 9. In [16], the structure of full adder and half 

adder, with a constant '1' as input have been proposed. 

According to [16], the implementation of the half adder only 

requires one NOT gate, and the implementation of the full adder 

only requires one XOR and one OR gate. According to Fig. 9, 

CPD of proposed-mul1 is “tAND+2tAC6G+5tFA” which tAND, tAC6G 

and tFA refers to delay of partial product generation step and 

delay of AC6G compressor and delay of full-adder, 

respectively. 
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Fig. 9. Structure of the proposed-mul1, which consists of ACFGI and ac6g 

whose numbers according to table III and table II. 

From Fig. 9, it can be seen that the partial products are shown 

with a black dot covered by a red circle symbol, which are 

omitted in the proposed-mul1 approximate multiplier based on 

the definition of the ACFGI, see Table III. Elimination of 

partial products has a significant impact on the hardware 

optimization. Some of its compressors have less than four 

inputs. Although earlier work has utilized exact half-adder and 

full-adder instead of approximate compressors with fewer 

inputs, the proposed multiplier uses approximate compressors 

with one or two inputs equal to '0' to achieve an efficient 

hardware multiplier. 

Fig. 10 depicts the proposed-mul2 structure. ACFGII is used 

for the middle columns, which are numbered according to Table 

IV. According to Fig. 10, CPD of proposed-mul2 is “tAND + tHA 

+ 9tFA”. 
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Fig. 10. Structure of Proposed-Mul2 Which Consists of ACFGII and AC6G 

Whose Numbers According to Table IV And Table II 

From Fig. 10, it can be seen that many bits of the partial 

products have not been used and included in the computations. 

These bits are highlighted by black dots with a red circle and 

labeled as the omitted partial product bits. Like proposed-mul1 

method, the proposed-mul2 uses AC6G in its columns 11 to 13.  



 

 

IV. EVALUATION AND COMPARISON 

In this section, the proposed-mul1 and proposed-mul2 are 

evaluated and compared to previous studies. To demonstrate the 

accuracy and implementation metrics of the proposed-mul1 and 

2, a FOM is introduced, which could highlight the tradeoff 

between precision and hardware efficiency of the designs. 

Moreover, to assess and verify the efficiency of the proposed 

designs, they were evaluated via image multiplication, 

sharpening, smoothing and edge detection. 

A. Hardware analysis 

 Table VI shows the synthesized results for circuit area, 

critical path delay, power consumption and the power-delay 

product (PDP) of the proposed-mul1, proposed-mul2, 

Mul_1[13], Mul_2[13], Multiplier1[15], M8_1[21], M8_2[21], 

Majority_based[16], C_full[19], M8[18], ALM_SOA[26] and 

Exact designs. In this table, the delays are the minimum delay 

at which the circuits can be synthesized. The simulation 

condition is typical (25˚C and supply voltage is 0.9V). All 

designs were described by VHDL (VHSIC Hardware 

Description Language). Implementation metrics were 

synthesized by the Synopsys Design Compiler (DC) using 

28nm TSMC technology.   

From the results presented in Table VI, it is obvious that both 

proposed-mul1 and proposed-mul2 designs have superior 

implementation metrics than other existing designs. This is due 

to the simplicity of the proposed partial product generation and 

reduction method that they use. 
TABLE VI 

HARDWARE RESULTS OF 8-BIT APPROXIMATE MULTIPLIERS  

 

From Table VI, it can be seen that Mul_2 [13], demonstrates 

the highest performance amongst existing methods reported in 

the literature and both proposed -mul1 and mul2 achieve higher 

performance than Mul_2[13], as follows. 

 Moreover, the proposed-mul1 outperforms the mul_2[13] in 

terms of the delay, power, area, PDP, and ADP by 31%, 53%, 

43%, 67%, and 59%, respectively. In addition, the proposed-

mul2 also demonstrates higher performance to that of Mul_2 

[13] in terms of the delay, power, area, PDP, and ADP by 23%, 

53%, 42%, 64%, and 52%, respectively. 

B. accuracy analysis 

To assess and compare the performance of the proposed 

approximate circuits with the existing methods, some 

assessment metrics such as: error rate (ER), mean relative error 

distance (MRED) and normalized mean error distance (NMED) 

are used [28]. The definition of these metrics are as follows: 

Error rate (ED) metric is the difference between the exact and 

approximate output values, as shown in (9)  

     𝐸𝐷 =  |𝑀 − 𝑀′| 
 (9) 

where M, M' denote the exact and the approximate output 

values and | | is the absolute value. 

For an n-bit multiplier, the NMED can be calculated using 

(11). To calculate NMED, the Mean ED (MED) is first 

computed using (10). The NMED is the MED normalized by 

the maximum output of the exact design. The gap between exact 

and approximate outputs is more substantial than their relative 

differences in many approximate applications involving the 

human senses [16].  

     𝑀𝐸𝐷 =
1

22𝑁
∑ 𝐸𝐷𝑖

22𝑁

𝑖=1  
(10) 

𝑁𝑀𝐸𝐷 =
1

22𝑁(2𝑁 − 1)2
∑ 𝐸𝐷𝑖

22𝑁

𝑖=1

 (11) 

The MRED metric represents the average relative error and 

can be calculated using (12):  

     𝑀𝑅𝐸𝐷 =
1

22𝑁
∑

𝐸𝐷𝑖

𝑀𝑖

22𝑁

𝑖=1  (12) 

where Mi is the exact value of the multiplication.  

The ER represents the percentage of multiplications for 

which the approximate design differs from its exact design 

counterpart  

MRED, ER, NMED and maximum ED metrics were 

calculated for 8-bit multipliers by simulating all 65536 input 

patterns using MATLAB software and tabulated in Table VII. 

TABLE VII 

ACCURACY RESULTS OF 8-BIT APPROXIMATE MULTIPLIERS   
Max ED MRED NMED ER(%) Multipliers 

9620 0.088 0.019 93.50 Mul_1[13] 

8056 0.082 0.018 93.48 Mul_2[13] 

4096 0.079 0.025 81.79 Multiplier1[15] 

6936 0.060 0.019 72.59 M8_1[21] 

1156 0.083 0.028 72.60 M8_2[21] 

1950 0.438 0.007 99.81 Majority_based [16] 

8264 0.007 0.003 19.02 C_full[19] 

568 0.041 0.002 82.61 M8[18] 

7670 0.055 0.013 98.80 ALM_SOA(M=5) 

7120 0.509 0.018 99.93 Proposed-mul1 

7148 0.151 0.017 98.86 Proposed-mul2 

From Table VII it can be seen that M8 [18] demonstrates the 

lowest NMED. It can be explained by the fact that the M8 uses 

exact compressors for most significant columns of its 

multiplier.  

The C_full [19] method’s MRED and ER values are the 

lowest amongst all methods. This can be explained by the fact 

that there is no truncation in its design. 

ADP 
PDP 

(fj) 

Area 

(um2) 

Power 

(uw) 

Delay 

(ns) 
Multipliers 

75.3 21.2 578.9 163.4 0.13 Mul_1[13] 

72 20.3 554.0 155.8 0.13 Mul_2[13] 

126.9 37.1 845.8 247.7 0.15 Multiplier1[15] 

124 39.1 688.7 217.3 0.18 M8_1[21] 

103.5 33.4 646.6 208.9 0.16 M8_2[21] 

87 22.3 580.1 148.4 0.15 Majority_based[16] 

168.8 57.8 804.0 275.2 0.21 C_full[19] 

182.6 62.4 829.8 283.5 0.22 M8[18] 

86.53 22.1 618.1 158.4 0.14 ALM_SOA(M=5)[26] 

29.8 6.8 331.4 76.1 0.09 Proposed-mul1 

34.4 7.3 318.5 73.4 0.10 Proposed-mul2 

221.3 75.1 922.2 313.1 0.24 Exact 



 

 

The proposed_mul1 demonstrates the highest ER and NMED 

as some of its compressors generate a non-zero output when 

their inputs are zero. The proposed-mul1 and proposed-mul2 

have nearly similar NMED value compared to Mul_2[13].  

The proposed Algorithm 1 was used to design the 16-bit 

approximate multiplier structure. The results of both proposed 

multipliers for 16-bit input operands are reported in Table VIII. 

The results are obtained with 10 million operands with uniform 

distribution. In comparison to 8-bit approximate multiplier, it is 

found that employing compressors according to Algorithm 1 is 

effective in reducing the amount of error metrics. 
TABLE VIII 

ACCURACY RESULTS OF 16-BIT APPROXIMATE MULTIPLIERS   
MRED NMED ER(%) Multipliers 

0.119 0.010 100 Proposed-mul1 

0.066 0.009 99.98 Proposed-mul2 

C. Image multiplication, sharpening, smoothing and edge 

detection 

The quality of the proposed multipliers is examined by 

applying them in fault-tolerant applications. The two proposed 

multipliers are used to multiply two images, sharpening, 

smoothing and edge detection as the essential operations in 

image processing. MATLAB programs is used to perform 

image applications using the approximate multipliers. The Peak 

Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) 

of the resulting image is used as a measure to assess the 

performance of the multipliers. The PSNR metric is defined as: 

     𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔 (
𝑚×𝑝×𝑀𝐴𝑋𝐼

2

∑ ∑ (𝐼(𝑖∙𝑗)−𝑘(𝑖∙𝑗))2𝑝−1
𝑗=0

𝑚−1
𝑖=0

)  
 

(13) 

Where m and p are the dimensions of the images. MAXI is the 

maximum possible value of image pixels and, I(i,j) and k(i,j)  

represents exact and approximate multiplication of two image 

pixel at location of i, j. According to [35], the SSIM is defined 

by (14). 

    𝑆𝑆𝐼𝑀 =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2 +𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
  

 

(14) 

In most image processing applications, 30 dB is considered 

as an acceptable value for the PSNR of the resulting images. As 

the difference between the exact and approximate is not 

distinguishable by the human eyes. The PSNR values are 

reported for nine image multiplication examples in Table IХ.  

From Table IХ, it can be seen that the resulting PSNRs of the 

images of the proposed approximation methods are above 

30dBs, while the proposed designs have significantly lower 

hardware cost. The approximate 8-bit multiplier [18] exhibit the 

highest PSNRs. This can be explained by the fact that this 

method uses exact compressors for most significant columns of 

its multiplier bits. 

In the [13], [14] and [19] images smoothing and sharpening 

are commonly used as applications to evaluate the effectiveness 

of approximate multipliers. Table X displays the minimum, 

maximum, and average PSNR and SSIM values. Nine images 

(House, Fruits, Pirate, Blonde Woman, Lena, Boat, 

Livingroom, Tank, Peppers) are examined to provide these 

results.  

The Sobel operator, utilized for edge detection also 

implemented using the proposed multipliers. The Sobel 

operator has several uses in computer vision for extracting basic 

features [19]. 

To perform a more comprehensive study and a fair 

comparison between hardware costs and error measurements, 

this paper introduces a figure of merit (FOM) by multiplying 

PSNR by the average of all hardware parameters delay, power 

and area, as shown in (15): 

𝐹𝑂𝑀 = 𝑃𝑆𝑁𝑅 × 

(
𝑑𝑒𝑙𝑎𝑦 𝑠𝑎𝑣𝑖𝑛𝑔 + 𝑎𝑟𝑒𝑎 𝑠𝑎𝑣𝑖𝑛𝑔 + 𝑝𝑜𝑤𝑒𝑟 𝑠𝑎𝑣𝑖𝑛𝑔

3
)  

(15) 

The PSNR value used in the FOM calculation represents the 

average over all case studies. In [16], authors introduced a 

FOM, which combines PSNR, delay saving and power saving 

of the hardware. However, this FOM does not consider the area 

saving of the hardware. The proposed FOM, defined by (15), of 

the two proposed designs and references are depicted in Fig. 11. 

From Fig. 11, it can be seen that the proposed_Mul1 and 2 

methods have the highest FOM value, imply their superiority to 

other methods. 

TABLE IХ 

THE PSNRS AND SSIM FOR IMAGE MULTIPLICATION OF 8-BIT APPROXIMATE MULTIPLIERS 
Lake-color 

× 

airplane 

mandril 
× 

mandril 

House 
× 

tree 

Tank 
× 

truck 

Female 
× 

tree 

Peppers 
× 

fruits 

Lena 
× 

female 

Peppers-color 
× 

Peppers-color 

Lake 
× 

bridge 
Multipliers 

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR 
0.844 29.76 0.930 28.64 0.915 29.97 0.929 36.15 0.927 29.94 0.827 30.24 0.835 31.39 0.866 34.01 0.918 30.48 Mul_1[13] 

0.836 29.43 0.935 29.20 0.932 30.55 0.942 37.17 0.865 31.64 0.837 31.11 0.896 33.19 0.891 34.47 0.920 31.68 Mul_2[13] 

0.869 23.20 0.889 24.60 0.881 24.85 0.940 35.19 0.936 27.67 0.784 28.56 0.828 30.26 0.748 29.47 0.930 27.87 Multiplier1[15] 
0.874 31.10 0.917 30.34 0.931 31.19 0.930 36.02 0.852 31.90 0.828 32.03 0.847 31.93 0.853 34.02 0.937 32.20 M8_1[21] 
0.850 28.42 0.848 24.40 0.854 28.53 0.913 33.29 0.915 27.16 0.788 28.44 0.812 28.72 0.808 28.38 0.929 29.49 M8_2[21] 
0.974 40.42 0.988 39.51 0.970 40.90 0.958 41.10 0.969 40.85 0.967 40.10 0.971 40.17 0.970 41.37 0.977 41.13 Majority_based[16] 

0.992 41.36 0.984 38.94 0.984 42.51 0.998 55.96 0.997 42.41 0.963 42.96 0.974 44.84 0.980 38.62 0.997 44.90 C_full[19] 

0.997 50.72 0.999 46.53 0.997 50.20 0.997 50.97 0.997 49.91 0.996 50.54 0.997 49.87 0.997 49.54 0.998 50.15 M8[18] 

0.886 32.13 0.957 31.52 0.942 31.57 0.905 35.38 0.908 34.60 0.825 30.52 0.859 31.38 0.858 30.42 0.958 35.01 ALM_SOA(M=5) [26] 

0.871 30.97 0.950 31.49 0.910 31.08 0.913 36.16 0.870 31.90 0.856 32.62 0.904 32.92 0.917 33.44 0.922 32.72 Proposed-mul1 

0.874 30.45 0.951 31.03 0.916 31.10 0.915 35.18 0.898 31.78 0.875 32.79 0.884 32.89 0.907 33.80 0.923 32.39 Proposed-mul2 

 

 



 

 

 
Fig. 11. The Values of FOM for Approximate Multipliers 

D. Neural Network Application 

Another application of approximate multipliers is the 

hardware implementation of neural networks. In the following, 

the efficiency of the proposed multipliers in the hardware 

implementation of neural networks has been examined and 

compared with similar works. For this purpose, a multi-layer 

perceptron (MLP) neural network and a convolution neural 

network (CNN) have been implemented and the results of the 

implementations are given in Table XI. 

The implemented MLP neural network consists of two layers 

with 700 neurons in the hidden layer and 10 neurons in the 

output layer. This network is trained using the MNIST dataset 

[36]. The implemented CNN also includes two convolution 

layers and a fully connected layer in the output. This network is 

trained using the SVHN dataset [37]. 

As Table XI shows, the proposed multipliers have a less than 

one percent drop in accuracy compared to the exact multiplier. 

Although the proposed multipliers are less accurate than the 

existing multipliers in some cases, it is noteworthy that the 

proposed multipliers provide high accuracy in the 

implementation of both networks, while some previous 

multipliers perform better in implementing one of the two 

networks and worse in one another. 
 

 

 

TABLE XI 

ACCURACY OF 8-BIT APPROXIMATE MULTIPLIERS EMPLOYED IN 

HARDWARE IMPLEMENTATION OF NEURAL NETWORKS  
Accuracy 

Multipliers 
CNN MLP 

81.5% 91.0% Mul_1[13] 

82.9% 90.9% Mul_2[13] 

84.7% 91.7% Multiplier1[15] 

81.6% 91.1% M8_1[21] 

84.5% 91.2% M8_2[21] 

82.4% 88.7% Majority_based [16] 

87.3% 91.7% C_full[19] 

83.2% 89.9% M8[18] 

79.8% 81.7% ALM_SOA(M=5) 

87.7% 91.1% Proposed-mul1 

88.1% 91.3% Proposed-mul2 

88.6% 92.1% Exact 

V. CONCLUSION 

In this paper, a six-gate and two gate-free approximate 

compressors were first introduced and then they were used to 

developed two approximate multipliers. The probabilities in 

partial product reduction were studied and used to develop more 

efficient approximate compressors and multipliers’ structure.  

Simulation results demonstrated that the application of the 

probability could significantly improve the performance of the 

approximate methods. The hardware analysis of the proposed 

approximate methods, called proposed-mul1 and 2 show that 

the proposed-mul1 outperforms 31%, 53%, 43%, 67%, and 

59% the best existing methods in terms of delay, power, area, 

PDP, and ADP, respectively. These terms are 23%, 53%, 42%, 

64%, and 52% in terms of delay, power, area, PDP, and ADP, 

respectively, for the proposed_mul2. Simulation results also 

show that the proposed methods have accepted performance in 

terms of accuracy for human perceptual based applications, 

e.g., image. A FOM, which combines three hardware 

parameters called delay saving, area saving and power saving 

and PSNR, was proposed and used to assess the performance of 

the proposed_mul1 and 2. The results show the merit of the 

proposed techniques. The performance of the proposed 

approximate multipliers in the hardware implementation of the 

neural network has also been investigated. The simulation 

results indicate the appropriate accuracy compared to the exact 

multiplier in these applications. This result indicates that the 

TABLE Х 

THE PSNRS AND SSIM ACHIEVED FROM SHARPENING, SMOOTHING AND EDGE DETECTION WITH 8-BIT APPROXIMATE MULTIPLIERS 
Edge detection Smoothing  Sharpening  

Multipliers  SSIM PSNR SSIM PSNR SSIM PSNR 

Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min 
0.957 0.948 0.945 43.97 42.92 42.39 0.962 0.941 0.939 31.97 30.62 29.81 0.984 0.987 0.981 32.44 31.23 29.12 Mul-1[13] 

0.957 0.947 0.912 44.31 42.67 41.74 0.981 0.984 0.974 37.89 33.95 34.78 0.984 0.988 0.983 35.40 33.95 32.12 Mul-2[13] 

0.949 0.939 0.910 44.07 42.37 41.20 0.949 0.936 0.916 30.49 28.86 26.07 0.983 0.988 0.973 30.81 28.85 26.37 Multiplier1[15] 
0.969 0.962 0.961 44.25 44.05 43.25 0.962 0.950 0.930 35.79 31.36 27.19 0.983 0.991 0.965 33.56 32.10 29.02 M8-1[21] 
0.940 0.928 0.917 41.96 41.24 40.37 0.989 0.984 0.981 41.86 39.81 37.42 0.981 0.986 0.957 31.46 30.05 26.16 M8-2[21] 
0.861 0.818 0.797 41.34 41.02 40.55 0.969 0.961 0.956 32.85 29.54 27.25 0.992 0.994 0.988 38.66 37.18 36.10 Majority-based[16] 

0.995 0.994 0.991 54.00 53.21 50.93 0.995 0.993 0.991 56.89 46.64 42.89 0.998 0.999 0.991 51.76 47.26 39.70 C-full[19] 

0.999 0.998 0.998 60.23 59.19 58.73 0.997 0.996 0.996 41.37 40.41 39.42 0.998 0.999 0.992 49.09 48.13 47.64 M8[18] 

0.966 0.952 0.946 45.73 44.90 43.49 0.974 0.963 0.953 37.81 35.75 32.09 0.983 0.989 0.969 38.38 36.33 32.14 ALM-SOA(M=5) [26] 

0.824 0.810 0.796 40.35 39.98 39.44 0.959 0.951 0.929 31.39 30.04 25.19 0.972 0.984 0.945 29.56 28.09 26.74 Proposed-mul1 

0.979 0.973 0.965 47.68 46.36 45.62 0.962 0.956 0.951 27.71 26.24 25.60 0.980 0.986 0.967 31.28 29.32 27.51 Proposed-mul2 

 

 



 

 

proposed multipliers can be used for artificial intelligence and 

machine learning applications. 
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