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Abstract: Ranking sports teams generally relies on supervised techniques, requiring either prior
knowledge or arbitrary metrics. In this paper, we offer a purely unsupervised technique. We
apply this to operational decision-making, specifically, the controversial European Super League for
association football, demonstrating how this approach can select dominant teams to form the new
league. We first use random forest regression to select important variables predicting goal difference,
which we use to calculate the Euclidian distances between teams. Creating a Laplacian eigenmap,
we bisect the Fiedler vector to identify the natural clusters in five major European football leagues.
Our results show how an unsupervised approach could identify four clusters based on five basic
performance metrics: shots, shots on target, shots conceded, possession, and pass success. The top
two clusters identify teams that dominate their respective leagues and are the best candidates to
create the most competitive elite super league.

Keywords: football; soccer; European Super League; spectral clustering; Laplacian eigenmap;
Fiedler vector
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1. Introduction

In recent years there has been growing interest in establishing an elite European
Super League (ESL) that would allow the top soccer clubs in Europe to compete in a
traditional league similar to the EuroLeague established in basketball [1]. This idea came
to fruition in 2021 with plans to disrupt European football operations and introduce a
new elite ESL. However, due to a backlash in public opinion, the ESL was short-lived and
ceased operations after clubs withdrew amid fines and sanctions [2]. Notwithstanding this,
although currently paused, the commercial pressures and incentives that spawned the ESL
have not disappeared, and the project may be resurrected in the future. As such, it raises
the critical question of how teams might be objectively selected to participate in an elite
European football league. European football generates annual revenues of approximately
$28 billion per annum [3], with 60% stemming from the global demand for the five major
leagues; English Premier League, Spanish La Liga, German Bundesliga, Italian Serie A,
and French Ligue 1. This revenue-generating capacity is based on leagues ensuring teams
are similar in resource, infrastructure, and performance [4–6]. Thus, selecting the right
teams to compete in an elite football league is an important issue with substantial financial
implications.

The challenge of selecting teams for inclusion in the ESL is representative of a much
broader research question in sport: how can athletes, players, and teams from different
contexts be objectively compared when the competition is fragmented so that participants
rarely compete against each other? An important research question that has received much
attention in recent years with the development of various ranking methodologies (e.g.,

Mathematics 2023, 11, 720. https://doi.org/10.3390/math11030720 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11030720
https://doi.org/10.3390/math11030720
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-6460-9937
https://doi.org/10.3390/math11030720
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11030720?type=check_update&version=1


Mathematics 2023, 11, 720 2 of 17

the Elo [7,8], Colley [7,9,10], Massey [7,10,11], Keener [7,10,12], and PageRank [10,13,14]
systems) developed to rate the relative strength of competitors in fragmented competition
or cup tournaments [7,10]. With specific reference to European soccer, numerous techniques
have been developed to [15–17] rank teams, such as the Euro Club Index [15], the ClubElo
Index [16], and the UEFA club coefficient rankings [17]. These ranking systems are generally
either adaptations of the Elo system utilising a who-beat-who methodology [7,8] or involve
allocating points for matches in European cup competitions. For example, the UEFA club
coefficient system awards 2 points for a win and 1 point for a draw, together with a complex
system of bonus points, arbitrarily awarded depending on the stage of the competition
and the perceived difficulty of the cup tournament [18]. Although useful, these ranking
systems are limited as they either rely on: (i) the subjective allocation of points; or (ii) the
competing teams playing each other on a regular basis—something that currently does not
occur in the various European cup tournaments. For example, Arsenal only played Real
Madrid once in 2006, while Tottenham Hotspur has never played Paris Saint-Germain.

Consequently, when teams play each other very infrequently, methodologies such
as the Elo system that rank teams according to who-beat-who tend to become inaccurate
because player line-ups can change significantly from season to season. Another problem
with ranking systems is that they tend to use a single metric, such as who-beat-who, or
the points awarded for match outcomes to construct a ranking table. Consequently, they
cannot cope with multiple performance metrics, such as those recorded during match play.
Furthermore, they reveal nothing about similarities in on-the-pitch performance between
teams or natural groupings (clusters) that may exist within European football.

Given that successful soccer teams often display similar match performance character-
istics (e.g., greater possession, more shots on target, etc.) [19–22], there is reason to believe
that irrespective of the domestic league from which they come, the top teams in Europe
might naturally aggregate into an elite cluster. Accordingly, we hypothesise that the top
European teams would tend to cluster according to their match performance characteristics.
This cluster could be used to select teams suitable for inclusion in the ESL. To this end,
we developed a novel unsupervised data-driven approach that blended machine learning
and graph theory to identify natural clusters of teams in Europe’s five major leagues using
aggregated performance data. In so doing, we aimed to demonstrate that it is possible to
objectively identify the top teams in Europe without the need for supervised learning or
any subjective assessment criteria.

One of the significant challenges when attempting to identify the natural clusters
was how best to accommodate the multiple performance metrics. We propose a higher
dimensional approach by computing the Euclidean distances between the respective soccer
teams in the vector space, creating a similarity matrix that could create a network graph
capturing the multi-dimensional relationships in the data [23].

While this approach enabled the closeness of the respective teams to be visualised in
a network graph, it still left the problem of identifying distinct clusters within the data.
Although numerous machine learning techniques exist for identifying clusters in data
or classifying data according to predetermined categories, many of these necessitate a
priori assumptions, such as stating the number of clusters in the data or specifying formal
categories within the data. Consequently, even when unsupervised, these techniques tend
to rely on subjective decisions that could compromise their objectivity. Consequently,
we constructed a Laplacian eigenmap from the similarity matrix [24,25], which allowed
repeated spectral graph partitioning using the Fiedler vector [26–28]. Our approach showed
that it is possible to identify the natural clusters in the data without the need for any a priori
assumptions—something that has never been attempted in a footballing context. By taking
this approach, we developed an objective methodology that identified the top football
teams in Europe purely from their match performance characteristics in the respective
domestic leagues. As such, this study is the first to report the use of spectral partitioning to
group football teams into natural clusters.
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2. Materials and Methods
2.1. Data Acquisition

Using publicly available football performance data from footystats.com [29] and
WhoScored.com [30], we used season performance data for all the teams in the Bundesliga,
La Liga, Ligue 1, English Premier League, and Serie A over seven seasons between 2013/14–
2019/2020. This produced a study data set comprising 686 observations from 150 football
teams. The variables collected are related to an individual team’s performance over the
entire season. The teams are listed in Appendix A, and the variables included in the study
are listed in Table 1. Each team’s data from all seven seasons were aggregated into a
single dataset (n = 150) to avoid pseudoreplication. This aggregated dataset was then used
to perform the data analysis and to compute the descriptive statistics (mean, standard
deviation (SD), median, minimum and maximum values) shown in Table 1. These were
computed using R (open-source statistical computing software; R Foundation for Statistical
Computing, Vienna, Austria).

Table 1. Variable description and descriptive statistics.

Variable Description Mean SD Median Min Max

Yellow_cards Number of yellow cards received 75.7 17 70.79 43.7 116
Red_cards Number of red cards received 4.06 1.76 4 0.5 9
Possession Possession percentage 48.8 4.2 47.81 39.1 64.14
Pass_Success Successful pass percentage 77.2 4.48 76.9 62.1 89.09
Aerials_Won Number aerial duals won 18.2 3.79 17.66 9.8 30.65
Shots_Conceeded Number of shots conceded per game 13.1 1.97 12.87 8.04 18.55
Tackles Number of tackles made per game 18.2 1.64 18.33 13.3 23
Interceptions Number of interceptions made per game 14.3 2.19 14.14 9.5 22.3
Fouls Number of fouls conceded per game 13.3 1.7 13.51 9.34 16.9
Offsides Number of offsides per game 2.1 0.38 2.07 1.25 3.4
Shots Number of shots per game 12.2 1.74 11.83 8.8 17.61
Shots_OT Number of shots on target per game 4.13 0.84 3.95 2.6 7.03
Dribbles Number of dribbles made per game 9.12 1.73 9.09 4.75 14.1
Fouled Number of times fouled by opposing team 12.5 1.67 12.74 7.93 17.1
GF Goals scored 46.3 14 42.58 22 101.9
GA Goals conceded 54.3 11.7 54.89 24.6 85
GD Goal difference (GF-GA) −8.06 23.4 −12.98 −51 70
Points Total points gained 45.6 15.1 42.36 15 91.29

2.2. Data Analysis Strategy

The study aimed to develop a methodology for identifying natural groupings between
teams in the various European soccer leagues, using season match data alone (excluding
goals scored or conceded). We performed an exploratory analysis using basic univariate
analysis on the variables used in this study before conducting a random forest regression
analysis to identify the measured variables that best predicted the goal difference for the
respective soccer teams. Goal difference was used because it is a better measure of team
performance and less susceptible to bias than points total, which is influenced by the
number of teams in the respective leagues [31].

Having identified the variables that best predicted end-of-season goal differences, we
computed the Euclidean distances between the respective teams in the vector space. We
used them to produce Laplacian eigenmaps of the data [24].

Laplacian eigenmaps are constructed from the eigenvectors of a graph Laplacian
matrix. They are essentially an embedding algorithm that seeks to project pairwise prox-
imity information onto a low dimensional space to preserve local structures in the data.
Unlike linear dimension reduction techniques such as principal component analysis (PCA),
Laplacian eigenmaps have a significant advantage in handling non-linear relationships in
the data [24,25]. Therefore, by producing Laplacian eigenmaps, we succinctly visualise
the relationships between the respective soccer teams and identify sub-groups within the
data using spectral cluster analysis techniques. To benchmark our findings, we classified
the respective teams according to their points, using 25% and 75% percentiles to reflect
top and bottom-performing teams, otherwise classed as middle teams. The 25% and 75%
percentiles turned out to be >56 points classified top teams, <36 points classified bottom
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teams, with all others classified as middle. All data and statistical analysis were performed
using in-house algorithms written in R [32].

2.3. Initial Analysis

An initial univariate analysis of the aggregated data was undertaken using a one-
way ANOVA, with post-hoc Bonferroni adjusted pairwise t-tests. This allowed a better
understanding of the data and variables used in this study.

2.4. Exploratory Random Forest Analysis

An exploratory random forest regression was performed to assess the observed vari-
ables’ relative importance as predictors of goal difference. Random forest analysis is an
ensemble classification technique popular in machine learning that generalises classification
trees [33,34]. It is a robust technique resistant to over-fitting and does not require strict
distributional assumptions [34,35]. Crucially, it has the advantage of assessing variable
importance, thus enabling the removal of redundant variables that do not assist in the
prediction process.

Random forest models produce many regression trees that use recursive partitioning
to group observations into predefined classes by binary splitting the predictor variables [36].
Bias and over-fitting are minimised by combining bootstrap bagging and utilising a random
subset of predictor variables (generally the square root of the total number of predictors
in the model) at each split. Each regression tree in the random forest is built using a
bootstrapping algorithm, which randomly ‘bags’ a sample from approximately two-thirds
of the data for training purposes. The remaining one-third of the cases or out-of-bag (OOB)
cases are used to assess the performance of the regression tree [33,37]. For each tree, the
prediction error—mean squared error (MSE) in the case of a regression tree—is computed.
These are then pooled to give an overall measure of classification accuracy, thus ensuring
that the assessment is unbiased [38].

We used the ‘randomForest’ package [39] in R [32] to perform a random forest analysis
involving creating 500 random trees. Initial analysis was undertaken using all thirteen
predictor variables to identify those variables that significantly influenced the outcome
variable, Goal_Difference. The 13 predictor variables used to predict goal difference were
shots on target, possession, shots, shots conceded, pass_success, dribbles, aerials won,
offsides, tackles, yellow cards, red cards, fouls, fouled, and interceptions, as described
in Table 1. The relative importance of the variables was assessed using the Gini variable
importance measure (VIM), which we corrected for bias using the heuristic strategy pro-
posed by [40,41] and implemented by [42]. For every node split in a tree, the Gini impurity
criterion (which assesses the data’s heterogeneity) for the two descendent nodes is less
than that of the parent node [43]. Therefore, adding up the Gini decreases for each variable
over all trees in the forest, it is possible to achieve a measure of variable importance. In our
analysis, variables that exceeded the inflexion point’s value on the Gini VIM curve were
deemed to be influential and thus retained when the random forest model was refined.
Having identified the key variables that best predicted goal difference, we then repeated
the random forest analysis using the refined model to understand the prediction accuracy
that could be achieved. Prediction of the respective teams’ goal differences was then per-
formed using the refined model and an ensemble prediction algorithm that aggregated
500 predictions. Because random forests use a self-validating MSE rate, there is no strict
need for cross-validation or a separate validation test to obtain an unbiased estimate of
model error [38]. However, we performed k-fold cross-validation using ten randomly
sampled ‘folds’ of approximately equal size to demonstrate the refined random forest
model’s validity.

2.5. Laplacian Eigenmaps

We performed spectral cluster analysis using a Laplacian eigenmaps method to visu-
alise relationships between the respective teams and identify natural sub-groups within the
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data [24]. This approach involves computing the pairwise Euclidean distances between the
respective teams using the key variables identified by the random forest analysis. These
were transformed into a [150 × 150] similarity matrix, Q, using a Gaussian radial basis
function (rbf) kernel [44], with 1, as follows:

Q = exp
(
− E2

2× σ2

)
(1)

where E is the matrix of pairwise Euclidean distances. The non-linear Gaussian function
filtered the Euclidean distance matrix so that edges between close neighbours were given
more weight than those between teams more distantly separated. From this, the modified
similarity matrix, W, was constructed by subtracting the [150 × 150] identify matrix, I, from
the similarity matrix, Q:

W = Q− I (2)

This was then used to construct the degree matrix, D, as follows:

s = W·n (3)

where n is a [150 × 1] vector of ones and D is:

Dij =

{
si
0

i f i = j
i f i 6= j

(4)

Having computed the degree matrix, D, the Laplacian, L, and normalised Laplacian,
Lnorm, matrices (both symmetric, positive semi-definite matrices) were then constructed [45–47],
as follows:

L = D−W (5)

Lnorm = D−0.5·L·D−0.5 (6)

After this, eigendecomposition of the normalised Laplacian matrix, Lnorm, was per-
formed to compute the diagonal matrix of eigenvalues, Λ, and the matrix of eigenvectors,
V, as follows:

Lnorm = V·Λ·VT (7)

However, unlike PCA, where the eigenvectors corresponding to the largest eigen-
values are used to construct the principal components, Laplacian eigenmaps construct a
configuration from the eigenvectors corresponding to the two or three smallest positive
eigenvalues. Because the smallest eigenvalue equals zero, the eigenvector corresponding to
this eigenvalue is often ignored. Instead, the eigenvectors associated with the successive
two or three smallest positive eigenvalues are used to construct the map [46]. We used the
last three positive eigenvectors, the fourth, third, and second (Fielder) smallest eigenvectors,
to construct 3D Laplacian eigenmaps of the European football teams. We used third and
Fielder vectors to construct 2D Laplacian eigenmaps.

2.6. Natural Clustering Approach

Laplacian eigenmaps are a spectral clustering technique. As such, it exhibits a criti-
cal property discovered by [48], namely that the eigenvector associated with the second
smallest eigenvalue (i.e., the smallest positive eigenvalue) can be used to partition a graph.
The Fiedler vector, as it is known, is widely used in spectral graph partitioning [26–28] as
an unsupervised technique for bisecting graphs, enabling sub-groups (clusters) within the
data to be readily identified. Multiple sub-groups can be identified by repeated bisection of
the Laplacian eigenmaps using the Fiedler vector [27].

To identify how many bisections were appropriate to establish the natural clusters in the
data, we ran a cluster validation using the ‘clValid’ package in R [49]. To do so, we used the self-
organising maps algorithm [50,51] since it is an unsupervised learning technique partitioning
data using artificial neural networks. To determine the suitability of 2–6 partitions of the fiedler
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vector, internal consistency was measured by the Dunn Index [52] and Silhouette Width [53],
both of which should be maximised [54]. The Silhouette Widths were also used to inspect final
cluster classifications, following the Fielder vector’s bisection. We created an undirected graph
network using the inverse of the Euclidean distances between the respective teams to visualise
natural clustering.

3. Results

This section may be divided by subheadings. It should provide a concise and pre-
cise description of the experimental results, their interpretation, and the experimental
conclusions that can be drawn.

3.1. Descriptive Statistics

The descriptive analysis results using the aggregated data split by benchmark percentiles
(top, middle, bottom) and the one-way ANOVA are presented in Table 2. Unsurprisingly, the
top teams had significantly greater possession and pass success; conceded fewer shots; made
more dribbles and shots than weaker teams (all p < 0.001); had greater possession and pass
success (both p < 0.001); and made more dribbles and shots (both p < 0.001) than the weaker
teams. In addition, they made significantly fewer fouls (p = 0.037) but did not significantly
receive fewer yellow (p = 0.214) and red (p = 0.406) cards.

Table 2. Descriptive statistical results for aggregated data (all seasons) and one-way ANOVA results.

Bottom (n = 37)
Mean (SD)

Middle (n = 81)
Mean (SD)

Top (n = 32)
Mean (SD)

Total (n = 150)
Mean (SD) ANOVA Sig.

Pairwise
Significant
Differences
(p = < 0.05)

Yellow_cards 78.379 (16.887) 76.219 (17.647) 71.335 (15.232) 75.710 (17.041) 0.214 Not Sig.
Red_cards 4.157 (1.848) 4.158 (1.812) 3.685 (1.510) 4.057 (1.761) 0.406 Not Sig.
Possession 46.090 (2.575) 47.693 (2.525) 54.557 (3.815) 48.762 (4.203) <0.001 1,2,3
Pass_Success 75.221 (4.033) 76.082 (3.356) 82.464 (3.470) 77.231 (4.482) <0.001 1,2,3
Aerials_Won 18.209 (4.623) 18.901 (3.386) 16.223 (3.069) 18.159 (3.793) 0.003 3
Shots_Conceeded 14.958 (1.653) 13.146 (1.360) 10.850 (1.146) 13.103 (1.967) <0.001 1,2,3
Tackles 18.481 (2.373) 18.114 (1.279) 18.233 (1.430) 18.230 (1.639) 0.532 Not Sig.
Interceptions 14.177 (2.431) 14.542 (2.124) 13.606 (2.000) 14.252 (2.195) 0.12 Not Sig.
Fouls 13.591 (1.800) 13.482 (1.655) 12.656 (1.569) 13.333 (1.701) 0.037 2,3
Offsides 2.019 (0.441) 2.048 (0.306) 2.330 (0.392) 2.101 (0.379) <0.001 2,3
Shots 11.380 (1.231) 11.651 (0.970) 14.533 (1.791) 12.199 (1.743) <0.001 2,3
Shots_OT 3.617 (0.480) 3.888 (0.447) 5.325 (0.809) 4.128 (0.838) <0.001 1,2,3
Dribbles 8.666 (2.052) 8.745 (1.292) 10.586 (1.508) 9.118 (1.725) <0.001 2,3
Fouled 12.863 (1.988) 12.348 (1.616) 12.464 (1.353) 12.500 (1.668) 0.298 Not Sig.
GF 35.137 (5.426) 43.007 (5.643) 67.335 (13.671) 46.256 (13.963) <0.001 1,2,3
GA 66.290 (10.102) 54.662 (6.296) 39.601 (6.200) 54.317 (11.667) <0.001 1,2,3
GD −31.153 (9.924) −11.655 (8.944) 27.734 (17.872) −8.062 (23.405) <0.001 1,2,3
Points 29.614 (5.280) 43.591 (4.988) 69.025 (10.534) 45.569 (15.056) <0.001 1,2,3

Legend: 1. Significant after Bonferroni adjustment between Bottom and Middle. 2. Significant after Bonferroni
adjustment between Bottom and Top. 3. Significant after Bonferroni adjustment between Middle and Top.

3.2. Random Forest Analysis Results

The exploratory random forest analysis incorporating all the predictor variables pro-
duced a regression model with an MSE of 115.62 and an R2 value of 0.7875 (or 78.75%
explained variance), which was used to assess variable importance (see Figure 1). From
Figure 1, it can be seen that the Gini VIM values for the five variables: Shots_OT (on target);
Possession; Shots_conceded; Shots; and Pass_Success, were far more than the values for
the other variables, which were subsequently discarded from the refined random forest
regression model. As such, this indicates that these five variables were the best predictors
of end-of-season goal difference.
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(10) Yellow_Cards; (11) Red_Cards; (12) Fouled; (13) Interceptions; (14) Fouls.

The refined random forest analysis utilising only these important variables produced
a regression model with an MSE of 113.84 and an R2 value of 0.7908 (79.08% variance
explained). The relationship between predicted and actual goal difference for the respective
clubs is shown in Figure 2. From this, it can be seen that the refined random forest model
predicted the end-of-season goal difference with a high degree of accuracy.

3.3. Laplacian Eigenmap Results

The 3D Laplacian eigenmaps of the teams are presented in Figure 3, which shows a
scatter plot of the three smallest positive eigenvectors. The 3D plots demonstrate a spiral-
like curve between the three dimensions, demonstrating a hierarchal structure. Figure 4
shows the 2D Laplacian eigenmap with the Fielder vector plotted against the third smallest
eigenvector. Here it shows a characteristic U-shaped curve, with the teams distributed
along its length. In Figure 4, the teams are classified according to the 25% and 75% percentile
points benchmark groupings. From this, it is relatively clear that most top clubs plot to
the Fiedler vector’s right (>0.1), with a relatively clear distinction from the rest. Similarly,
the bottom clubs tend to plot to the left of the Fielder vector (<0). However, middle clubs
have a less clear space along the curve. Interestingly, La Palmas (Team No. 120; La Liga),
who were benchmarked bottom, and Nice (Team No. 61; Ligue 1) plot closer to the top
benchmarked teams >0.1 on the Fielder vector.
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When the benchmarked classifications are mapped onto a network graph of the inverse
Euclidean distances (Figure 5), it can be seen that although top teams cluster to the bottom
right, there is considerable overlap across all top, middle and bottom teams. Indeed, the
average silhouette width values for the benchmark classifications were only 0.04, indicating
that classification based on the national leagues’ points does not accurately reflect the
natural groupings between the various European soccer clubs.
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3.4. Natural Clustering Results

The Dunn Index and Silhouette Width results for the self-organising maps cluster
validation are presented in Figure 6. It is clear that the 4-cluster solution maximises both
internal validation measures, requiring three bisections of the Fielder vector.
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Figure 6. Dunn Index (left) and Silhouette Width (right) cluster validation for 2 to 6 clusters using
self-organising maps algorithm.

The three bisections of the Fielder vector are presented in Figure 7, creating 4 clusters
SC1-SC4. Here the clusters demonstrate a group of four very strong dominating teams
(SC1), fifteen strong teams (SC2), thirty-seven medium-strength teams (SC3), and ninety-
four weaker teams (SC4). Overall, the natural clusters identified by the Fielder vector
algorithm are well defined, with an average Silhouette Width = 0.61, no cluster below 0.50
(Figure 8 and Table 3), and a Dunn Index = 0.0098. The lowest internally valid cluster
is SC2 with a Silhouette Index = 0.50, suggesting this group is more heterogeneous than
homogeneous. The natural clustering network graph is visualised in Figure 9, which shows
how cohesive the clusters are based on the inverse Euclidian distance.
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Table 3. Number of teams in each cluster and Silhouette Index.

Cluster Number
of Teams Team ID Silhouette Index

SC1 4 53, 12, 65, 10 0.77
SC2 15 30, 2, 55, 50, 15, 54, 42, 86, 47, 21, 4, 73, 59, 69, 43 0.50

SC3 37
133, 147, 135, 120, 150, 105, 67, 148, 68, 49, 84, 76,
20, 75, 81, 78, 40, 98, 14, 72, 85, 70, 61, 28, 16, 46,
74, 11, 89, 6, 94, 144, 79, 44, 56, 124, 8

0.65

SC4 94

131, 102, 63, 1, 101, 24, 48, 134, 110, 122, 140, 117,
129, 32, 90, 108, 112, 116, 18, 19, 38, 142, 145, 109,
37, 130, 83, 121, 128, 141, 41, 132, 103, 3, 93, 119,
62, 118, 138, 127, 87, 64, 106, 111, 115, 22, 35, 31,
91, 126, 96, 80, 143, 13, 92, 26, 29, 17, 9, 146, 149,
95, 100, 66, 52, 123, 51, 88, 45, 60, 39, 36, 33, 5, 25,
139, 113, 77, 27, 104, 137, 71, 99, 97, 82, 58, 23, 34,
136, 57, 114, 107, 125, 7

0.60

Using the Fielder vector allows natural groupings of teams (or firms) to be created.
The results show that using the Fielder vector algorithm is relatively effective in finding
natural clusters within European football teams. Using unsupervised machine learning
and clustering methods, we can objectively identify the dominant teams across Europe.
Therefore, clusters 1 and 2 demonstrate the best teams to compete in an elite European
Super League—should it be created.
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4. Discussion

For this paper, we hypothesised that the top European teams would tend to cluster
together according to their on-the-pitch performance characteristics. Accordingly, we
developed an unsupervised data-driven approach that utilised a Laplacian eigenmap to
identify the natural clusters of teams across the five major football leagues in Europe. We
aimed to develop a robust objective methodology for selecting teams suitable for inclusion
in a future ESL. To this end, we could demonstrate that the respective teams did indeed
form natural clusters independent of the leagues from which they came (Figure 9) and
that these could be readily identified using the Fiedler vector without any subjective input.
Furthermore, concerning the question of ‘who’ are the top teams in European soccer, the
Laplacian eigenmap methodology classified 15 out of the 16 ‘breakaway’ ELS teams as
candidates for the elite league [55]. However, our approach did not select Atlético Madrid
and instead included Napoli, Tottenham Hotspur, Lyon, and Fiorentina in the elite group,
which comprised 19 teams and two sub-clusters, SC1 and SC2 (Table 4). Interestingly, all
19 teams were ranked in the top 25% of their respective domestic leagues (Figure 5).

Unlike conventional ranking systems, sorting teams according to a single metric, our
methodology enabled the similarities and differences between the respective football teams
from disparate leagues to be mapped onto a 2D space. Using a Laplacian eigenmap of
the Euclidean distance graph, we were able to project complex multivariate non-linear
relationships within the match performance data onto a 2D space, making it easy to visualise
the distances between the respective teams, thus identifying the natural neighbourhoods
in which teams inhibit. Through the bisection of the Fiedler vector, we showed how these
natural neighbourhoods created suitable clusters to categorise teams. Using the variables
that best predict goal difference, we were able to show that this approach could identify the
teams who dominated their respective leagues based on actual performance rather than
points earned. For example, using the performance metrics of shots on target, possession,
shots, shots conceded, and pass success, we were able to demonstrate that Barcelona was
much closer to Paris Saint-Germain and Bayern Munich than Real Madrid, and that Arsenal,
Inter Milan, and Roma were all closely related. Indeed, we were surprised by just how
well these match performance metrics could cluster the top teams, even though the teams
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came from different leagues and points and goals were not involved in the methodology.
As such, this supports the opinion that successful teams tend to share similar game style
characteristics [19–22]. However, further work will be required to determine whether this
is true or false.

Table 4. The Laplacian eigenvector approach to a new elite European Super League.

Team_ID Team Tournament Cluster

1 10 Barcelona La Liga SC1
2 12 Bayern Munich Bundesliga SC1
3 53 Manchester City Premier League SC1
4 65 Paris Saint Germain Ligue 1 SC1
5 2 AC Milan Serie A SC2
6 4 Arsenal Premier League SC2
7 15 Borussia Dortmund Bundesliga SC2
8 21 Chelsea Premier League SC2
9 30 Fiorentina Serie A SC2

10 42 Inter Milan Serie A SC2
11 43 Juventus Serie A SC2
12 47 Liverpool Premier League SC2
13 50 Lyon Ligue 1 SC2
14 54 Manchester United Premier League SC2
15 55 Marseille Ligue 1 SC2
16 59 Napoli Serie A SC2
17 69 Real Madrid La Liga SC2
18 73 Roma Serie A SC2
19 86 Tottenham Premier League SC2

The methodology described in this paper is completely new to the field of sports
analytics and could be applied to multiple applications within sports and wider fields
of operational research. Within a footballing context, the approach could be applied
to understanding which players naturally cluster together based on their performance
metrics. This could then be used to aid decision-making regarding player acquisitions
and development. Likewise, a similar approach could be used to support merger and
acquisition decisions by identifying creditable target firms or help in understanding the
impact of strategic choices when attempting to create a competitive advantage.

While the work reported here suggests that our approach might have wider appli-
cability in sport than just selecting teams for inclusion in the ESL, further work will be
required to refine the technique and identify suitable problems to which the methodology
is well suited. However, with specific reference to the selection of teams for the ESL, one of
the limitations of the present study is that we only used simple performance metrics that
were open source and thus freely available. Therefore, further work is recommended to
identify the performance metrics that optimise cluster identification and best describe the
similarities and differences between the respective teams. Another limitation of our study
is that we did not compare the teams selected by bisecting the Fiedler vector with those
that might be selected using the various ranking systems. Therefore, further work should
be undertaken to evaluate how our approach’s results compare with those produced by the
more traditional ranking systems.

5. Conclusions

In conclusion, we have shown it is possible to identify the top soccer teams in Europe
using only match performance data (i.e., shots on target, possession, shots, shots conceded,
and pass success) collected from their respective domestic leagues (i.e., the Bundesliga, La
Liga, Ligue 1, English Premier League, and Serie A). Furthermore, using a novel unsuper-
vised Laplacian eigenmap approach, we could visualise the similarities and differences
between the respective teams in Europe and identify the natural clusters that exist without
resorting to any a priori knowledge. As such, we identified 15 of the 16 top teams invited
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to participate in the elite European Super League in 2021. This suggests that the top teams
in Europe exhibit similar playing styles that cause them to cluster into natural communities
irrespective of the domestic league from which they come.
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Appendix A

Team_ID Team Tournament Team_ID Team Tournament

1 AC Ajaccio Ligue 1 76 Sassuolo Serie A
2 AC Milan Serie A 77 SC Bastia Ligue 1
3 Almeria La Liga 78 Schalke 04 Bundesliga
4 Arsenal Premier League 79 Sevilla La Liga
5 Aston Villa Premier League 80 Sochaux Ligue 1
6 Atalanta Serie A 81 Southampton Premier League
7 Athletic Bilbao La Liga 82 Stoke Premier League
8 Atletico Madrid La Liga 83 Sunderland Premier League
9 Augsburg Bundesliga 84 Swansea Premier League

10 Barcelona La Liga 85 Torino Serie A
11 Bayer Leverkusen Bundesliga 86 Tottenham Premier League
12 Bayern Munich Bundesliga 87 Toulouse Ligue 1
13 Bologna Serie A 88 Udinese Serie A
14 Bordeaux Ligue 1 89 Valencia La Liga
15 Borussia Dortmund Bundesliga 90 Valenciennes Ligue 1
16 Borussia M.Gladbach Bundesliga 91 Valladolid La Liga
17 Cagliari Serie A 92 Verona Serie A
18 Cardiff Premier League 93 VfB Stuttgart Bundesliga
19 Catania Serie A 94 Villarreal La Liga
20 Celta Vigo La Liga 95 Werder Bremen Bundesliga
21 Chelsea Premier League 96 West Bromwich Albion Premier League
22 Chievo Serie A 97 West Ham Premier League
23 Crystal Palace Premier League 98 Wolfsburg Bundesliga
24 Eintracht Braunschweig Bundesliga 99 Burnley Premier League
25 Eintracht Frankfurt Bundesliga 100 Caen Ligue 1
26 Elche La Liga 101 Cesena Serie A
27 Espanyol La Liga 102 Cordoba La Liga
28 Everton Premier League 103 Deportivo La Coruna La Liga
29 Evian Thonon Gaillard Ligue 1 104 Eibar La Liga
30 Fiorentina Serie A 105 Empoli Serie A
31 Freiburg Bundesliga 106 FC Koln Bundesliga
32 Fulham Premier League 107 Leicester Premier League
33 Genoa Serie A 108 Lens Ligue 1
34 Getafe La Liga 109 Metz Ligue 1
35 Granada La Liga 110 Paderborn Bundesliga

https://whoscored.com
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Team_ID Team Tournament Team_ID Team Tournament

36 Guingamp Ligue 1 111 Palermo Serie A
37 Hamburger SV Bundesliga 112 Queens Park Rangers Premier League
38 Hannover 96 Bundesliga 113 Angers Ligue 1
39 Hertha Berlin Bundesliga 114 Bournemouth Premier League
40 Hoffenheim Bundesliga 115 Carpi Serie A
41 Hull Premier League 116 Darmstadt Bundesliga
42 Inter Milan Serie A 117 Frosinone Serie A
43 Juventus Serie A 118 GFC Ajaccio Ligue 1
44 Lazio Serie A 119 Ingolstadt Bundesliga
45 Levante La Liga 120 Las Palmas La Liga
46 Lille Ligue 1 121 Sporting Gijon La Liga
47 Liverpool Premier League 122 Troyes Ligue 1
48 Livorno Serie A 123 Watford Premier League
49 Lorient Ligue 1 124 RasenBallsport Leipzig Bundesliga
50 Lyon Ligue 1 125 Alaves La Liga
51 Mainz 05 Bundesliga 126 Leganes La Liga
52 Malaga La Liga 127 Dijon Ligue 1
53 Manchester City Premier League 128 Nancy Ligue 1
54 Manchester United Premier League 129 Middlesbrough Premier League
55 Marseille Ligue 1 130 Crotone Serie A
56 Monaco Ligue 1 131 Pescara Serie A
57 Montpellier Ligue 1 132 Amiens Ligue 1
58 Nantes Ligue 1 133 Benevento Serie A
59 Napoli Serie A 134 Brescia Serie A
60 Newcastle United Premier League 135 Brest Ligue 1
61 Nice Ligue 1 136 Brighton Premier League
62 Norwich Premier League 137 Deportivo Alaves La Liga
63 Nuernberg Bundesliga 138 Fortuna Duesseldorf Bundesliga
64 Osasuna La Liga 139 Girona La Liga
65 Paris Saint Germain Ligue 1 140 Huddersfield Premier League
66 Parma Serie A 141 Lecce Serie A
67 Rayo Vallecano La Liga 142 Mallorca La Liga
68 Real Betis La Liga 143 Nimes Ligue 1
69 Real Madrid La Liga 144 RB Leipzig Bundesliga
70 Real Sociedad La Liga 145 SDHuesca La Liga
71 Reims Ligue 1 146 Sheffield United Premier League
72 Rennes Ligue 1 147 SPAL Serie A
73 Roma Serie A 148 Strasbourg Ligue 1
74 Saint-Etienne Ligue 1 149 Union Berlin Bundesliga
75 Sampdoria Serie A 150 Wolverhampton Wanderers Premier League
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