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S U M M A R Y

Background: Aerosol spread of severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) is a major problem in hospitals, leading to an increase in supplementary high-
efficiency particulate air filtration aimed at reducing nosocomial transmission. This arti-
cle reports a natural experiment that occurred when an air cleaning unit (ACU) on a
medicine for older people ward was switched off accidentally while being commissioned.
Aim: To assess aerosol transport within the ward and determine whether the ACU reduced
airborne particulate matter (PM) levels.
Methods: An ACUwas placed in a ward comprising two six-bedded bays plus three single-bed
isolation rooms which had previously experienced several outbreaks of coronavirus disease
2019. During commissioning, real-time measurements of key indoor air quality parameters
(PM1e10, CO2, temperature and humidity) were collected frommultiple sensors over 2 days.
During this period, the ACU was switched off accidentally for approximately 7 h, allowing the
impact of the intervention on PM to be assessed.
Findings: The ACU reduced the PM counts considerably (e.g. PM1 65.5e78.2%) throughout the
ward (P<0.001 all sizes), with positive correlation found for all PM fractions and CO2 (r¼0.343
e0.817;allP<0.001).PMcounts rose/fell simultaneouslywhentheACUwasoff,withcorrelation
of PM signals frommultiple locations (e.g. r¼0.343e0.868; allP<0.001) for particulates<1mm).
Conclusion: Aerosols migrated rapidly between the various ward subcompartments, sug-
gesting that social distancing alone cannot prevent nosocomial transmission of SARS-CoV-2
as this fails to mitigate longer-range (>2 m) transmission. The ACU reduced PM levels
considerably throughout the ward space, indicating its potential as an effective inter-
vention to reduce the risk posed by infectious airborne particles.
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Introduction

The coronavirus disease 2019 (COVID-19) pandemic has
rapidly advanced understanding of how infections can spread
within buildings. It is now known that small aerosol particles
are dominant in the transmission of severe acute respiratory
syndrome coronavirus-2 (SARS-CoV-2) [1e6] and, likely, many
other respiratory viruses [7,8]. Aerosols are formed when
exhaled respiratory particles <100 mm in diameter evaporate
rapidly to approximately 20e34% of their original size [9e11].
These remain suspended in the air for many minutes [12] and
can be readily inhaled, with those in the range 2.5e20 mm
accounting for 90% of viral transmission at the nasopharynx
[11]. As such, transmission of SARS-CoV-2 is thought to occur
primarily when infectious aerosol particles of this size come
into contact with angiotensin-converting enzyme 2 (ACE2)
receptors in the nasopharynx [13]. In addition, ACE2 receptors
further down the respiratory tree, including on the alveolar
epithelial cells, are a likely portal of entry. Inhalation of
smaller particles <5 mm down to the alveoli may therefore also
contribute to acquisition of infection, and possibly heighten
the severity of disease [14,15].

Infectious respiratory aerosols can be liberated in large
quantities when talking, singing or simply breathing [16e18],
and may build up to high concentrations in room air if the space
is not ventilated adequately [12]. Consequently, poorly venti-
lated spaces containing infectious individuals, such as hospital
wards, pose a considerable threat to patients and healthcare
workers (HCWs) alike, with numerous nosocomial COVID-19
outbreaks reported [19e27]. The problem can be particularly
acute on wards containing older and/or immunocompromised
patients who are vulnerable to severe disease following viral
infection [28]. Furthermore, in open-plan wards with multi-
bedded bays, pressure gradients may exist due to room
mechanical ventilation or wind pressure, causing respiratory
aerosol particles to migrate considerable distances. As such,
vulnerable patients some distance (>2 m) from an infector may
become exposed [29]. Realization of this issue has promoted
interest in non-pharmaceutical interventions, such as supple-
mentary room air filtration [30], air disinfection [31,32], and
the use of carbon dioxide (CO2) monitoring to optimize ven-
tilation [33,34].

This article reports the results of a natural experiment that
occurred on a medicine for older people ward at an NHS uni-
versity hospital in the UK, when a room air cleaning unit (ACU)
containing high-efficiency particulate air (HEPA) filters and
ultraviolet-C (UVeC) air disinfection lamps was being com-
missioned. It was possible to test the hypothesis that partic-
ulate matter (PM) levels in the air throughout the space were
higher when the ACU was not in operation compared with a
matched period on the following day when the ACU was
switched on. The authors were also able to gain insights into
the transport of aerosols around the ward by correlating the
various PM signals from the respective sensors.

Methods

Ward layout and ventilation

The study involved half a ward on the sixth floor of the
hospital, which comprised three side rooms, each with a door,

and two six-bedded bays open to a central corridor (Figure 1).
The ward was ventilated by a central ducted mechanical ven-
tilation system and openable aluminium sash windows, with
the bed bays and side rooms positively pressurized with respect
to the central corridor. As this study was retrospective, taking
advantage of a natural experiment, the ‘open/closed’ status of
the various windows and doors on the ward was not recorded.
Anecdotally, both doors and windows were frequently opened
and closed depending on the clinical, operational and comfort
requirements of the patients and HCWs. Historical measure-
ments taken by the hospital estates department in 2020 indi-
cated that the ward ventilation rates ranged from 1.7 to 5.8
(median 4.0) air changes per hour. The ACU was sited in an
open communal space, which was the most densely populated
part of the ward, with HCWs tending to congregate there prior
to individual patient care activities.

Air cleaning unit

A single ACU (AeroTitan3000; AirPurity UK Ltd, Cambridge,
UK) was sited opposite the two six-bedded patient bays
(Figure 1, Figure S1 and Table S1, see online supplementary
material). The ACU was a hybrid system that combined HEPA
filters and UV-C lamps (at 254 nm), and had a clean air delivery
rate (CADR) of 2550e3000 m3/h (Table S1, see online supple-
mentary material). The unit produced a laminar flow that
manipulated the air currents in the ward space at multiple
heights at a distance >10 m, promoting greater mixing and
enhancing the dilution effect.

The natural experiment occurred on 3rd and 4th August 2021.
The ACU was switched off accidentally early in the morning of
the first day; a mistake rectified by the afternoon of the same
day.

Sensors

Seven sensors (AeroSentinel.v1; AirPurity UK Ltd) recorded
indoor air quality data with the following accuracies: PM
fraction <1 mm diameter (PM1) and PM fraction between 1 and
2.5 mmdiameter (PM2.5) (�10 mg/m3); PM fraction between 2.5
and 4 mm diameter (PM4) and PM fraction between 4 and 10 mm
diameter (PM10) (�25 mg/m3); CO2 (�30 ppm); temperature
(�0.4 �C); and relative humidity (�3%) (Table S2, see online
supplementary material). Sensor A was situated close to the
ACU at a height of 2 m, with the remaining sensors placed at
heights ranging from 1.5 to 1.7 m depending on available
electrical outlets (Figure 1).

Data

Data from the various sensors was sampled every 1 min,
giving a total of 2782 data points per sensor over the 2-day
period. In total, 7.6% of the data were missing, and this was
imputed as the mean value of the adjacent data points.

Change point analysis and validation

As contemporaneous records were not kept regarding the
precise points in time when the ACU was switched off and on,
to avoid the use of any a-priori assumptions, change point (CP)
analysis [35,36] was employed using pruned exact linear time
methodology [37]. Sensor A was selected for this analysis as it
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was best placed to monitor both occupancy levels and the ACU.
CPs were identified by visual inspection, and tested statisti-
cally using the Chow test, with P<0.05 deemed to indicate
significance.

Primary statistical analysis

The hypothesis tested was that the respective PM levels were
higher when the ACU was not in operation on the first day com-
paredwithamatchedperiodonthe seconddaywhentheACUwas
in operation. This was tested using an unpaired ManneWhitney
test in R (R Core Team, 2021; https://www.R-project.org/).
The observed effect size was evaluated using Cliff’s delta sta-
tistic, with themagnitude assessed using the thresholds provided
by Romano et al. [38] (i.e. jdj<0.147 negligible; 0.147�jdj<0.33
small; 0.33�jdj<0.474 medium; 0.474�jdj large).

To assess the relationships between the signals from the
individual sensors, Pearson correlation r values were

computed, together with their statistical significance. This was
done for each individual sensor using data for the entire study
period. In addition, the extent to which airborne PM may be
migrating around the ward was assessed by analysing the
between-sensor correlations for each air quality metric, using
only the data collected when the ACU was off. For all tests,
P<0.05 was deemed to indicate significance.

Results

Change point analysis results

Five CPs were identified, as shown in Figure 2. Of these,
Table I shows that CP1 and CP2 (representing when the ACUwas
accidentally switched off and turned back on again) closely
coincided with the approximate time-stamps that were
recovered from the ACU memory card in December 2021. CP4
occurred when the power/speed of the ACU was increased. The
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Figure 1. Layout of the medicine for older people ward showing the positions of the air cleaning unit (ACU) and sensors (green diamonds).
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reasons for the changes observed at CP3 and CP5 are unclear.
CP3 might reflect the downturn in activity that generally
occurred on the ward after the evening meal.

Descriptive time series results

Figure 3 shows the collated PM1 time series data over 2 days
from each sensor (AeG). Similar patterns for all other PM
fractions were also observed (Figures S2e4, see online sup-
plementary material). All sensors demonstrated large increa-
ses in particulates of all sizes throughout the ward when the
ACU was off. Noticeably, all sensors around the ward detected
similar signals with respect to PM and CO2 levels at similar
times (Figures 3 and 4, and Figures S2e4, see online supple-
mentary material).

Statistical analysis results

The visual observations were confirmed by the means and
standard deviations of the sensor signals for the periods before,
between and after the identified CPs. These are shown in
Table S3 (see online supplementary material) and, for all the
sensors, the observed signal readings were much higher
between CP1 and CP2 when the ACU was off compared with all
other periods. In particular, Table II shows the respective signal
levels were higher when the ACU was not in operation on the
first day compared with a matched period on the second day
when the ACU was in operation (P<0.001 for all sensors). With
respect to this, a large effect size was observed for PM1, PM2.5,
CO2 and vapour pressure levels. In comparison, the effect size
for the PM4 and PM10 signals was much smaller, although still
significant.

Within- and between-sensor correlations

Within all sensors, strong positive correlations were
observed between most of the signals (Figure S5 and Table S4,
see online supplementary material). PM signals were strongly
correlated with each other (r¼0.718e0.996), and CO2 and

vapour pressure were positively correlated with the PM signals
and each other, although not as strongly (r¼0.387e0.732).

When the ACU was switched off, aerosol particle counts
tended to rise and fall simultaneously throughout the ward
space. Strong correlations were observed for all metrics
between all the sensors (r¼0.723e0.868), except for Sensor F
(r¼0.343e0.552) (Table S5, see online supplementary mate-
rial). Sensor F was distal to the ACU and located in a narrow
corridor space with a less predictable air flow.

Discussion

This natural experiment is the first of its kind to evaluate the
sequential transport of airborne PM around a medical ward,
and to assess the impact of an ACU on this. This study showed
that particles up to 10 mm (beyond the 5 mm aerosol/droplet
cut-off used previously) travelled considerable distances
around the ward (beyond 2 m), and that the ACU reduced PM
levels of all sizes throughout the space, not just in close
proximity to the device. While the authors did not distinguish
between bioaerosols and inert aerosols, it is likely that the
monitored PM behaviour was indicative of any bioaerosols
present in the ward air because viral particles tend to occur
mainly in smaller respiratory aerosols <5 mm [39e41]. As such,
these findings shed new light on the transport of aerosols
around hospital wards, and increase understanding of airborne
transmission of viruses such as SARS-CoV-2 in real-life clinical
settings.

The considerable movement of particles of all sizes around
the ward was evidenced by the simultaneous rise and fall in the
PM counts measured by the multiple sensors when the ACU was
switched off accidentally. This illustrates the potential for
inhalational exposure to infectious agents at some distance
from an infected individual. Although the authors did not
measure bioaerosols or the presence of infectious agents
directly, previous studies have shown that respiratory viruses
are most likely to be recovered from particles <5 mm [39e42],
suggesting that they are contained in exhaled bioaerosols that
have undergone rapid evaporation [9]. When speaking, 80e94%
of the respiratory particles produced are �100 mm [43], and
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Figure 2. Particulate matter (PM) fraction <1 mm diameter (PM1) signal from Sensor A (black) with the interrupted mean signal (blue) for
the sections between the major change points (CP). Major CPs were identified at epochs 497, 935, 1092, 1982 and 2389. Epochs are in min.
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these quickly reduce to 30% of their original diameter through
evaporation under normal room conditions [44]. This means
that the vast majority of exhaled particles become aero-
solized, with only particles >100 mm behaving ballistically
[45,46]. Given that median (range) aerosol particle emission
rates of 135 particles/s (range 85e691) for breathing, 270
particles/s (range 120e1380) for normal talking and 570 par-
ticles/s (range 180e1760) for loud talking have been recorded
[18], this suggests that, on a typical medical ward, many
thousands of respiratory aerosols are likely to be liberated in
the size range represented by the PM signals [43]. These are
then likely to remain airborne and potentially migrate around
the ward, as observed in this study. Thus, these findings may
help explain why nosocomial outbreaks of COVID-19, including
superspreading events involving multiple subcompartments,
have occurred despite the application of social distancing
measures between patients [21].

It is likely that the observed PM migration around the ward
was assisted by the turbulent wakes formed as HCWs move,
which can transport airborne particulates considerable

distances [12,47]. The extent of this particle transport was
somewhat unexpected because the ward ventilation system
was designed to promote flow in one direction towards the
corridor, which should have inhibited the movement of PM
between the various bays. At present, the movement of indi-
viduals and equipment remains a significant blind spot in tra-
ditional computational fluid dynamics modelling, which usually
models static scenarios. Thus, a strength of the current study is
that particle movement was tracked in a real-world setting
whilst ward business continued as usual. Collectively, this
suggests that respiratory aerosols, many of which are <5 mm
diameter, can be widely disseminated around wards, and that
social distancing measures alone are unlikely to prevent the
transmission of infection [29].

Interestingly, when the ACU was off, PM levels of all sizes
were positively correlated with indoor CO2 levels. This suggests
that human activity such as movement, bed making, washing,
etc. is key to generating particulates [48,49]. This is of par-
ticular interest given that CO2 monitoring has been used to
infer airborne infection risk in enclosed/shared spaces [50].

Table I

Occurrence of major change points (CP) in particulate matter fraction<1 mm diameter (PM1) signal for Sensor A, together with time-stamp
data recovered from the air cleaning unit (ACU)

CP CP epoch CP time and date Significance

(P-value)

Time-stamp

recovered from ACU

Reason for change

CP1 497 08:17 (3rd Aug) <0.001 08:16 (3rd Aug) ACU switched off
CP2 935 15:35 (3rd Aug) <0.001 15:34 (3rd Aug) ACU switched on
CP3 1092 18:12 (3rd Aug) <0.001 N.A. Not known
CP4 1982 09:02 (4th Aug) <0.001 09:05 (4th Aug) ACU speed setting adjusted
CP5 2389 15:49 (4th Aug) <0.001 N.A. Not known

*A*

*B*

*C*

*D*

*E*

*F*

*G*
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Figure 3. Collated smoothed particulate matter (PM) fraction <1 mm diameter (PM1) signals from all the sensors for 3rd and 4th August
2021. The black dashed lines denote where the change points (CPs) occurred, and the dashed red lines denote when breakfast (B), lunch
(L) and dinner (D) were served to the patients on the ward. Noise from the PM signals was removed using a cubic smoothing spline in R
(https://www.R-project.org/), with the smoothing parameter set to 0.1. Epochs are in min.
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Indoor CO2 levels mainly reflect occupancy patterns [51e54],
with exhaled CO2 being positively correlated with respiratory
aerosol emissions [55]. However, levels do fluctuate rapidly,
likely due to the large volume space and changing shift pat-
terns. The study data would not, therefore, support using CO2

alone as a marker of safe ventilation.
When the ACU was in operation, PM levels reduced sig-

nificantly across all sensors, including those distant to the unit,
with the effect less pronounced for the PM4 and PM10 signals,
reflecting the lower particle counts in this size range and the
fact that larger particles tend to settle out of the air at a faster
rate. This confirmed that the ACU cleaned the air as antici-
pated, but the extent of its impact, as a single machine, was
unexpected. The installed ACU had a high velocity laminar
discharge, which promoted good air mixing, and this, combined
with a high CADR, extended its ‘reach’ and greatly assisted in
PM removal throughout the ward. It is hypothesized that this
likely extended the air cleaning impact of the unit beyond its
immediate environment. Therefore, when installing units, it is
important to ensure a similar extended cleaning effect, at least
to the mid-point of any adjacent ACUs. Furthermore, it is
important to validate the performance of any ACUs that are
installed by nebulizing an inert saline solution into the air, and
observing the impact of the ACU on the decay process [some-
thing undertaken on the study ward prior to the natural
experiment, but not reported here (results available on
request)]. Validation not only demonstrates the efficacy of
ACUs, but also helps to inform their placement so that per-
formance can be optimized.

In addition to filtering out PM, it was observed that the ACU
reduced CO2 levels unexpectedly when switched on. Given that
neither HEPA nor UV-C affect CO2 levels, it is postulated that
better air mixing on the ward prevented the gaseous CO2 from
stratifying, thus reducing concentrations at the level of the
sensors. Alternatively, the ACUmay have increased air velocities

within theward space to such anextent that additional ‘fresh air’
may have been entrained in from outside. While both explan-
ations appear plausible, it is difficult to explain themagnitude to
the reduction in CO2 levels observed in Figure 4 simply by better
mixing alone, especially as the sensors were mounted >1.5 m
above floor level. This requires further investigation.

Limitations

This study involved a single ward built before regulations
required higher air change rates and the installation of doors to
separate bays, something that likely influenced PM movement
between the various ward subcompartments. Therefore, the
authors cannot be certain that the results are generalizable to
other settings, although wards of this age and design are not
uncommon in the UK and other countries.

The authors were not able to determine the proportion of
measured PM that comprised respiratory aerosols, and while
historical ward ventilation data existed, the actual air change
rates that occurred during the study were not known because it
was a natural experiment. The various sensors on the ward
were also not placed at the same height due to operational
constraints, which may have influenced the PM counts
observed. Furthermore, staff occupancy and movements, and
window and door opening were not recorded. Therefore, con-
clusions concerning the mechanisms by which PM and CO2 were
generated and removed from the ward space remain hypoth-
esis generating rather than confirmed.

Door and window opening can alter the airflow character-
istics of ward spaces and the performance of the ACU. For
example, closing doors to ward side rooms may isolate these
spaces from the ACU, allowing the PM concentration to
increase. Additionally, external wind pressure can contribute
to the migration of aerosol particles indoors. The authors were
not able to evaluate these factors, so further work is required
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to investigate their impact on ACU performance. Notwith-
standing this, given that the study utilized data collected on
two consecutive days on the same ward, it is unlikely that door
and window opening or staff behaviour were systematically
different between the two time periods. Furthermore, local
weather conditions throughout the study period were fairly
constant, with a light breeze from the south-east occurring on
both days. Therefore, although no data on window/door
opening exist, this represents a relatively minor limitation
which does not change the overall conclusions of the study. In
particular, given the nature of microbial bioaerosols in hospi-
tals [11,39e41], it is highly likely that a reduction in these by
any mechanism will improve indoor air quality. As such, this
work offers important insights into the effect of ACUs on an
inpatient ward.

In conclusion, this study builds on previous work showing that
ACUs reduce microbial contamination in ward air [39], demon-
strating that the application of a combined HEPA/UV-C ACU on an
older adult inpatient ward reduced airborne PM levels sub-
stantially, most notably in the size range associated with respira-
tory viruses, such as SARS-CoV-2. Therefore, such devices may be
applicablenotonly topathogens traditionallyconsideredairborne,
such as measles and tuberculosis, but also where aerial dissem-
ination contributes to the transmission of fungal and bacterial
infections, such as with Clostridioides difficile spores [56].

This study found that airborne particulates associated with
human activity migrated considerable distances around the
ward, indicating that social distancing measures alone are
unlikely to prevent the transmission of respiratory viral infec-
tions and possibly other infections that are aerially

Table II

Results of statistical test of the hypothesis that the signal levels were higher when the air cleaning unit (ACU) was not in operation on 3rd

August 2021 compared with a matched period on 4th August 2021 when it was in operation

Signal Sensor ID ACU off

mean (SD)

ACU on

mean (SD)

Significance

P-value

Effect size

Cliff’s delta

Effect

magnitude

PM1 G 3.73 (1.30) 1.03 (0.41) <0.001 0.99 Large
F 5.05 (2.35) 1.10 (0.71) <0.001 0.96 Large
E 2.83 (0.70) 0.89 (0.40) <0.001 0.98 Large
A 2.96 (0.87) 0.35 (0.24) <0.001 1.00 Large
B 2.61 (0.57) 0.90 (0.43) <0.001 0.96 Large
C 2.60 (0.57) 0.82 (0.38) <0.001 0.98 Large
D 2.64 (0.61) 0.82 (0.39) <0.001 0.98 Large

PM2.5 G 0.39 (0.31) 0.06 (0.03) <0.001 0.97 Large
F 0.75 (0.65) 0.09 (0.16) <0.001 0.92 Large
E 0.22 (0.13) 0.06 (0.07) <0.001 0.93 Large
A 0.20 (0.14) 0.02 (0.01) <0.001 1.00 Large
B 0.20 (0.11) 0.06 (0.07) <0.001 0.90 Large
C 0.15 (0.08) 0.05 (0.04) <0.001 0.93 Large
D 0.17 (0.09) 0.05 (0.04) <0.001 0.93 Large

PM4 G 0.15 (0.19) <0.01 (0.01) <0.001 0.59 Large
F 0.37 (0.43) 0.022 (0.10) <0.001 0.63 Large
E 0.04 (0.07) <0.01 (0.04) <0.001 0.33 Small
A 0.04 (0.09) <0.01 (<0.01) <0.001 0.27 Small
B 0.04 (0.07) 0.010 (0.04) <0.001 0.32 Small
C 0.02 (0.05) <0.01 (0.02) <0.001 0.22 Small
D 0.03 (0.06) <0.01 (0.02) <0.001 0.34 Medium

PM10 G 0.03 (0.04) <0.01 (<0.01) <0.001 0.55 Large
F 0.07 (0.09) <0.01 (0.02) <0.001 0.60 Large
E 0.01 (0.02) <0.01 (<0.01) <0.001 0.26 Small
A 0.02 (0.04) <0.01 (<0.01) <0.001 0.26 Small
B 0.01 (0.01) <0.01 (<0.01) <0.001 0.24 Small
C 0.01 (0.03) <0.01 (0.01) <0.001 0.20 Small
D 0.02 (0.03) <0.01 (0.01) <0.001 0.33 Small

CO2 G 815.18 (139.89) 513.28 (109.67) <0.001 0.90 Large
F 734.24 (80.02) 479.59 (111.88) <0.001 0.88 Large
E 691.24 (72.78) 501.26 (72.28) <0.001 0.92 Large
A 713.82 (80.28) 499.45 (78.06) <0.001 0.91 Large
B 818.86 (115.04) 520.79 (105.35) <0.001 0.93 Large
C 833.17 (121.85) 494.87 (85.35) <0.001 0.95 Large
D 748.61 (113.94) 447.10 (102.95) <0.001 0.93 Large

VP All sensors 1.37 (0.05) 1.18 (0.06) <0.001 0.98 Large

PM, particulate matter; PM1, PM fraction <1 mm diameter; PM2.5, PM fraction between 1 and 2.5 mm diameter; PM4, PM fraction between 2.5 and
4 mm diameter; PM10, PM fraction between 4 and 10 mm diameter; CO2, carbon dioxide; VP, vapour pressure; SD, standard deviation.
All results were strongly significant after Bonferroni’s correction.
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disseminated. Collectively, this suggests that appropriately
sized ACUs have the potential to reduce nosocomial infections,
especially in inadequately ventilated hospital wards. Further
work is needed to investigate this, and inform the placement
and commissioning of ACUs to ensure optimum performance.
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