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Abstract 

Loading of the skeleton can be achieved through weight-bearing exercise which is important 

for the development of a functionally and mechanically appropriate bone structure.  Our 

objectives were to determine hip cross-sectional geometry in elite male athletes (n=54) 

subjected to different loading modalities (gymnastics, endurance running and swimming) and 

non-athletic, age-matched controls (n=20). Dual energy X-ray absorptiometry (iDXA, GE 

Healthcare, UK) measurements of the total body (for body composition) and the left proximal 

femur were obtained. The Advanced Hip Structural Analysis (AHA) programme was used to 

determine conventional areal bone mineral density (aBMD), hip axis length (HAL), cross-

sectional area (CSA), and cross -sectional moment of inertia (CSMI). Bone strength indices 

were derived using the femoral strength index (FSI) (Yoshikawa et al, 1994). Gymnasts and 

runners had significantly greater age, height and weight adjusted aBMD than swimmers and 

controls (p<0.05). Gymnasts and runners had greater resistance to axial loads (CSA) and 

runners had increased resistance against bending forces (CSMI), compared to swimmers and 

controls (p<0.01). Hip axis length was greater in controls and this group also had lower 

indices of bone strength (FSI) compared to gymnasts and runners (1.4 vs 1.8 and 2.1 

respectively, p<0.005).  Lean body mass correlated significantly with aBMD, CSA and FSI 

(r=0.365-0.457, p<0.01) and correlations were stronger in controls (r=0.657-0.759, p<0.005). 

Our findings suggest the importance of regular physical loading and lean mass for promoting 

bone density and bone structural properties. Further research examining the contribution of 

different loading modalities to specific skeletal geometrical properties would be of value to 

inform strategies directed at maximising bone strength and thus fracture prevention, through 

sport and exercise.  
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Introduction 

The architecture of the skeleton is unique and complex; functioning to provide support, 

protection and strength whilst also being light enough to enable the body to move. Equally as 

vital, bone tissue is also extremely dynamic, and continuously responds to diverse 

biochemical and physical stimuli. One such major stimulus is physical loading of the skeleton 

and this can be achieved through weight-bearing exercise of an appropriate magnitude, 

frequency and loading distribution.  

During childhood and young adulthood, bone modelling and remodelling serves to 

optimise bone strength which can be enhanced through functional loading. (Seeman, 2008). 

Physical loading through weight-bearing exercise provides an oestrogenic stimulus to bone, 

which is essential for the development of a functionally and mechanically appropriate 

skeleton, thus the attainment of an optimal peak bone mass. This phenomenon is 

comprehensively described in the Mechanostat theory, which proposes that when all else is 

equal, individuals who are physically active should have stronger bones than their less active 

peers. More specifically, the Mechanostat theory indicates that in order for loading to 

generate sufficient strain, the loading should be a) of sufficient magnitude to elicit a response, 

b) distributed to the skeleton in abnormal directions; and c) exerted at a regular frequency 

(Schoenue, 2005). It is also known that the skeletal response to loading is site-specific 

(Sugiyami et al, 2010). The majority of conventional weight-bearing exercise generate 

loading to the lower limbs, and reflecting this, studies reporting positive effects, have done so 

for the regions of the hip as described in recent reviews of this literature (Hind and Burrows, 

2007; Nikander et al, 2010). This is of particular importance because the hip, and in 



particular, the femoral neck; is the skeletal site at which osteoporotic fractures are most 

common and most devastating.  

Fractures occur when loading exceeds the capacity of the bone to withstand them. 

Over the last 5 years, research has confirmed that this capacity is dependent on both the 

mineral density of the bone, and on the bone structural geometrical properties (Faulkner et al, 

2006; Leslie et al, 2009; LaCroix et al, 2010). Dual energy X-ray absorptiometry (DXA) 

continues to be the preferred method for the assessment of bone mass and the diagnosis of 

osteoporosis because of low dose radiation, high accuracy and precision, and because it is 

quick to perform and non-invasive. However, the traditional DXA outcome, areal bone 

mineral density (aBMD), does not depict the geometrical properties of bone.  

Recent models of DXA now include the measurement facility; hip structural analysis 

(HSA). This utilises properties of the DXA image to obtain geometrical measures that are 

associated with bone strength. HSA assesses bone geometry in the narrow regions parallel to 

thin cross sectional slices of bone at specific locations throughout the proximal femur. The 

method has been compared favourably to volumetric qualitative computed tomography 

(QCT) (Prevrhal et al, 2008) and enables DXA-derived data to be expressed in ways that are 

more mechanically interpretable so that the geometric properties that underlie the prognostic 

value of BMD measurements can provide critical insights into bone strength. The results 

from HSA have been used in studies as indices of bone strength to predict hip fracture 

(Faulkner et al, 2006; Leslie et al, 2009), to inform about sexual and ethnicity dimorphism in 

bone strength and fracture (Wang et al, 2005; Yates et al, 2007), evaluate associations with 

exercise during growth (Janz et al, 2007) and assess the effects of weight-bearing exercise 

interventions on bone (Petit et al, 2004).  



 Despite the increase in the availability and use of HSA, there have been no studies 

evaluating HSA parameters in male athletes from different sports. The characterisation of 

femoral bone structure in athletes may provide insights into how different activities may 

influence bone strength and would contribute to our understanding about the optimal 

exercises to promote bone strength. The objective of this current study therefore, was to 

determine whether the geometric expression of DXA-derived bone qualities differ between 

male athletes and non-athletic controls and between male athletes from different sports. We 

hypothesised that, corresponding to the loading produced by certain sports, geometric 

strength and aBMD would be greater in male gymnasts and runners compared to swimmers 

and non-athletic controls.  

 

Materials and methods 

Participants  

Male endurance runners, gymnasts, swimmers and non-athletic controls were recruited to 

participate in the study. Participants had been recruited for 2 separate DXA-related studies 

within the Carnegie Research Institute, and results were collated for the current study. 

Endurance runners were recruited from athletics clubs and from an advertisement in a 

popular running magazine. Gymnasts were recruited from the Carnegie Regional Gymnastics 

Centre, and were members of the national squad, and swimmers were from a regional 

swimming club. Non athletic controls were recruited from the University. We administered a 

questionnaire to determine medical and injury history (including stress fractures) and exercise 

training. The age criteria for participation in the study were 18 to 35years. All runners were 

Caucasian and no participants had any medical condition or were using any medications or 

supplements that might interfere with bone metabolism. The male athletes were all competing 



at national or international standard and were involved in sport-specific training for at least 5 

hours per week for the last 3 years. The Leeds NHS Research Ethics Committee and the 

University Research Ethics Committee reviewed and approved the study and informed 

consent was obtained from all participants.  

 

Anthropometry 

Participants wore light-weight clothing and removed shoes and jewellery for all physical 

measurements. Standing height was measured using a stadiometer (SECA, Birmingham, UK) 

and recorded to the nearest millimetre. Body mass was measured with calibrated electronic 

scales (SECA, Birmingham, UK) and recorded in kilograms (kg) to the nearest 0.1 kg. Body 

mass index (BMI) was calculated by using the formula, of [body mass (in kg)/ height (in 

metres) 2 (kg/m2)].  

 

Body composition 

Body composition was also measured in all participants using dual energy X-ray 

absorptiometry (Lunar iDXA™ fan beam densitometer with enCORE software, GE Medical 

Systems, UK) of the total body, and variables included fat percentage and lean mass. 

 

Bone mineral density measurements 

Areal BMD was evaluated using DXA (Lunar iDXA, enCORE software 12.45, GE 

Healthcare, UK). Age and sex-specific UK reference data was used to calculate BMD Z-

scores. Measurements were performed at the left total proximal femur. Short term in-vivo 



precision for DXA measurements in our DXA Unit, of the total proximal femur in adults is 

0.6% (Hind et al, 2010). The observed in-vitro coefficient of variation was low at less than 

0.5% for the regular quality control scans of the Lunar calibration phantom.  

 

Hip structural analysis  

Structural geometry of the left proximal femur was determined from the scans acquired and 

described above. These scans were analysed for bone structure and cross sectional geometry 

by utilising the advanced Hip Structural Analysis (AHA) programme. This was originally 

developed by Beck et al (1990) and based on the principles first described by Martin and Burr 

(1984) which states that mass in a pixel value calibrated in g/cm2 of hydroxyapatite can be 

converted to linear thickness in cm by dividing by the effective mineral density of fully 

mineralised adult bone. The enCore AHA software version 12.45 provides a line of pixels 

traversing the bone axis which gives a projection of the surface area of bone in the cross 

section. We report the results from the narrow neck region (NN) across the femoral neck at 

its narrowest point. At this analysis region, several measurement outcomes were obtained.  

Hip axis length (HAL), cross sectional area (CSA in cm2; exclusive of soft tissue 

spaces), cross-sectional moment of inertia (CSMI, in cm4) and femoral strength index (FSI) 

were obtained using HSA. HAL is a measurement of the length of the femoral neck and head, 

and this has been proven to be an independent predictor of fracture risk. CSA is an indicator 

of axial strength and is taken following the y axis along the NN (y is the distance from the 

centre of mass to the superior neck margin). CSMI is a measurement of density and the 

distribution of the density around the femoral neck. It reflects periosteal apposition that 

brings the bone mineral further away from the central axis, thus increasing bone strength. FSI 

is an advanced feature which has been added to more recent versions of enCORE and can be 



used for investigative purposes to indicate the risk of fracture for forces generated during a 

fall on the greater trochanter. It combines BMD, femur geometry, age, height and body mass, 

and is calculated as strength/stress, where stress is moment * y /CSMI + force /CSA, and is 

based on work by Yoshikawa et al (1994). 

 

Statistical analyses 

Statistical tests were performed using SPSS version 17.0 (LEAD Technologies Inc©). 

Descriptive statistics (means and standard deviations) were used to characterise the sample 

and the comparative groups. Comparisons of descriptive results between groups were made 

using one-way analysis of variance (ANOVA), followed by the Bonferroni post-hoc test. 

Linear multivariate analyses were conducted to calculate marginal means for bone variables 

after correction for age, height and weight, and Bonferroni pairwise comparisons were 

computed between groups. Pearson’s correlation analyses were used to evaluate relationships 

between the anthropometric and body composition variables and bone structural measures in 

participants. Covariates were selected based on theoretical and actual relationships to bone 

density and structural variables. The level of significance was set at p<0.05.  

 

Results 

Descriptive statistics 

Participant descriptive are summarised in Table 1. Runners were older than gymnasts 

(p=0.034) and gymnasts were shorter in height than runners (p=0.002), swimmers (p=0.016) 

and controls (p=0.002). Runners weighed less than than swimmers (p=0.004) and controls 

(p=0.001), and controls had higher body fat percentage than runners (p=0.006) and gymnasts 



(p=0.001). Differences in lean mass between groups did not reach statistical significance 

(p>0.05).  

Table 1 Anthropometric measures and demographic characteristics of male athletes and non 

athletic controls 

 

Bone density and geometric results 

Bone density and geometrical results for each group before correction for age, height and 

weight, are provided in Table 2. Gymnasts had significantly greater areal BMD of the 

proximal femur compared to runners (p=0.016) and controls (p=0.005). After adjustment for 

age, height and weight, gymnasts and runners had greater areal BMD than controls (p=0.04; 

p=0.045).  

HAL was shorter in swimmers compared to runners (p=0.03) and controls (p=0.03). 

Gymnasts had a larger CSA of the NN than swimmers (p=0.012) and controls (p=0.004), and 

runners had a larger CSA than controls (p=0.018). These differences continued after 

correction for age, height and weight (p<0.05). CSMI was greater in runners than gymnasts 

and controls (p<0.04) and after correction for age, height and weight, in runners than in 

swimmers (p=0.02) and controls (p=0.01).  

FSI was greater in runners compared to swimmers (p=0.001) and controls (p=0.001), 

and in gymnasts compared to controls (p=0.015). After adjustment for age, height and 

weight, these differences remained (p<0.05). 

 



Table 2 Comparison of areal bone mineral density (aBMD) and bone geometry 

measurements in the narrow neck region of the proximal femur between male athletes and 

non-athletic controls. HAL hip axis length; CSA cross sectional area; CSMI cross sectional 

moment of inertia; FSI femoral strength index 

 

Relationships between covariates and bone variables 

In all participants age, height and weight were correlated with bone area of the femoral neck 

(r=0.516, r=0.516, and r=0.238 respectively; p<0.05). Age, weight and lean mass were 

correlated with femoral neck areal BMD (r=-0.347, r=0.262, and r=0.468 respectively; 

p<0.05). Although there were no differences between groups in lean mass, there was a 

significant association between lean body mass and the hip structural variables of both CSA 

(r=0.444, p<0.001; Fig. 1) and CSMI (r=0.260, p<0.05). Height and weight were also 

associated with CSA (R=0.413, R=0.366; p<0.01) and CSMI (r=0.538, r=0.365; p<0.001). 

Following adjustment for age, height and weight, lean mass was positively correlated with 

BMD (r=0.395, p=0.003), CSA (r=0.457, p=0.002) and FSI (r=0.365, p=0.039). There were 

no associations with percentage body fat.  

Fig. 1: Correlation between lean body mass and cross sectional area of the femoral narrow 

neck 

 

There were no correlations between age and bone variables when groups were analysed 

separately. Correlations between anthropometry and lean mass with bone variables were 

higher in the controls, particularly for the associations of lean mass with BMD (r=0.759, 

p<0.001), CSA (r=0.752, p<0.001) and FSI (r=0.657, p<0.001). In runners and gymnasts, 



lean mass only correlated with CSMI (r=0.509 p=0.02, and r=0.671 p=0.012 respectively). In 

gymnasts, height was also a significant predictor of CSMI (r=0.554, p=0.01).  

 

Discussion 

This is the first study to investigate DXA advanced hip structural analysis--derived 

geometrical properties of the femoral neck in elite male athletes exposed to different loading 

modalities through sport. In support of our hypothesis, we found that male gymnasts and 

runners had greater resistance to axial loads (CSA) and that runners had increased periosteal 

apposition (which augments bone strength through greater resistance against bending forces) 

(CSMI), compared to elite swimmers and non-athletic, age-matched controls. Hip axis length, 

which is an independent risk factor for hip fracture in adult populations, was increased in the 

non-athletic control group and this group also had lower indices of bone strength (FSI) 

compared to gymnasts and runners. The differences in strength properties remained 

significant after adjusting for differences in age, body size (height) and weight, which in 

accordance with the literature demonstrating associations between HSA measures and 

fracture (Faulkner et al, 2006; Leslie et al, 2009), suggests that gymnasts and runners may 

have a degree of protection against hip fracture. 

Periosteal apposition reduces bone fragility by adding more bone mass to the skeleton 

and increases stiffness and strength by adding bone further away from the central axis 

(Turner, 2003). Importantly, we observed indications of greater periosteal apposition in 

runners compared to swimmers and non-athletic controls. This supports the number of animal 

studies that have demonstrated periosteal expansion with increased mechanical loading 

(Pederson et al, 1999; LaMothe et al, 2005). Interestingly, we also found lower CSMI in 

gymnasts, potentially reflective of the lower age of the gymnasts, through the knowledge that 



bone width through periosteal apposition also increases during young adulthood (Riggs et al, 

2004).  

Hip structural variables and bone density were strongly related with anthropometric 

measurements (body size and body weight) and total lean body mass. It is known that 

individuals of short stature will have lower areal BMD measurements than their taller 

counterparts. However, although being of smaller stature, gymnasts had greater BMD than all 

groups, which suggests superiority in bone mineral and strength. Importantly, and in 

agreement with several previous studies (DiVasta et al, 2007; Travison et al, 2008), total lean 

body mass was found to be a significant predictor in measures of BMD, CSA, CSMI, and 

FSI, whereas total body fat percentage was not. Lean body mass is recognised as a surrogate 

for the muscle loading forces that direct bone adaptation. Furthermore, previous research has 

demonstrated that dynamic forces rather than static forces provide the greatest osteogenic 

stimulus (Lanyon and Rubin, 1984; Forwood and Turner, 1995). Our results are supportive of 

this in that greater total lean mass was associated with greater bone strength measurements. 

Our sample comprised of athletic groups and a non-athletic control group, and of relevance, 

the association between lean mass and hip structural properties were strongest for the control 

group. This is suggestive of the functional muscle-bone unit (Schoenue, 2005) and further 

highlights the importance of lean body mass for bone strength. It is likely that the forces 

provided through physical loading such as gymnastics, which provides high magnitude 

loading in abnormal directions; exerts an additional, advantageous influence on bone 

strength.  

Some potential limitations should be considered when interpreting the results of this 

study, in terms of the population and analyses. The participant groups were not equal, with 

only 9 participants in the group of swimmers, and small numbers could limit the 

generalisability of our findings. Additionally participants were male, and therefore our 



findings are not applicable to females, who differ in terms of bone development and peak 

bone mass accrual. BMD, assessed by 2D image technique such a DXA, is an estimate of the 

average amount of mineral per unit area in a section of bone facing the detector. Since the hip 

strength indices assessed by AHA are estimated by use of the same mass distribution curve as 

BMD measurement, both CSA and CSMI depend on the amount of mineral present in the 

femoral neck, and consequently are not totally independent of BMD.  

In summary, gymnasts and runners had superior resistance to axial loads at the hip 

compared to swimmers and age-matched, non-athletic controls. This may offer a lower risk 

against fracture, particularly through the greater observed FSI outcomes. Runners also had 

greater resistance to bending loads through higher CSMI. Lean body mass was predictive of 

hip structural properties in all participants, and in particular, in non-athletic controls, which 

suggests a beneficial action of lean mass even in the absence of regular mechanical loading 

through sport, and supports previous research emphasising the importance of the muscle-bone 

unit. In conclusion, the hip structural analysis programme is useful for acquiring insights into 

bone strength beyond conventional BMD.  We highlight the value of regular physical loading 

and lean mass for promoting bone density and bone structural properties. Further research 

examining the contribution of different loading modalities to specific skeletal geometrical 

properties would be of value to inform strategies directed at maximising bone strength and 

thus fracture prevention, through sport and exercise. 
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Table 1 Anthropometric measures and demographic characteristics of male athletes and non 
athletic controls 

Characteristics Runners Gymnasts Swimmers Controls 

 

Age (years) 

 

27.2 ±4.4* 

 

22.0 ±2.0 

 

23.2 ±4.3 

 

26.4±5.4 

Height (cm) 178.9±7.2 170.9±7.5* 179.8±4.1 178.7±5.5 

Weight (kg) 68.4±7.0 69.8±8.2 78.7±7.2* 76.8±7.9* 

Lean mass (kg) 54.0±5.5 57.8±5.0 61.3±5.4 56.8±6.0 

Percentage body fat 16.3±4.4 13.2±3.7 15.6±3.5 22.8±5.4* 

*Significantly different p<0.05 

 

Table 2 Comparison of areal bone mineral density (aBMD) and bone geometry 

measurements in the narrow neck region of the proximal femur between male athletes and 

non-athletic controls. HAL hip axis length; CSA cross sectional area; CSMI cross sectional 

moment of inertia; FSI femoral strength index 

Variable Runners  Gymnasts Swimmers Controls 

 

aBMD (g/cm2) 

 

1.089±0.11 

 

1.217±0.14* 

 

1.140±0.07 

 

1.063±0.01 

HAL 121.7±6.6 111.7±5.0* 113.8±6.7* 123.4±7.3 

CSA (mm2) 202.5±24.8* 202.2±23.5* 197.8±23.5 187.1±25.3 

CSMI (mm4) 194.9±41.5* 164.2±38.9 173.1±39.8 180.0±37.1 

FSI 2.06±0.3* 1.8±0.1* 1.5±0.3 1.4±0.3 



 

 

Fig. 1: Correlation between lean body mass and cross sectional area of the femoral narrow 

neck 

 

 


