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• Controlling algorithm applicable to edge systems.
• Competition Between Storage Heaters and Heat Pump.
• Reduction of CO2 Emissions.
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A B S T R A C T

Green house gases reduction is critical in current climate emergency and was declared as major target by
United Nations. This manuscript proposes the progressive adaptive recursive multi threshold control strategy
for hybrid energy storage system that combines thermal storage reservoirs, heat pumps, storage heaters,
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Green house gases
Energy management

photovoltaic array and a battery. The newest control strategy is tested in numerical experiment against primal
dual simplex optimisation method as benchmark and previous iterations of RED WoLF threshold approaches.
The proposed algorithm allows improvement in reduction of CO2 emissions by 9% comparatively to RED WoLF
double threshold approach and by 26% comparatively to RED WoLF single threshold approach. Besides, the
proposed technique is at least 100 times faster than linear optimisation, making the algorithm applicable to
edge systems. The proposed method is later tested in numerical experiment on two measured datasets from
Luxembourg school and office, equipped with batteries and ground source heat pumps. The system allows
the reduction of CO2 emission and improvement of self-consumption, size reduction of the photovoltaic array
installed at the facilities by at least by half as well as substituting battery storage by thermal storage, reducing
the initial investment to the system. Intriguingly, despite 3.6 times difference in efficiency between heat
pumps and storage heaters, the system equipped with latter have potential to achieve similar performance
in carbon reduction, suggesting that energy storage have more prominent carbon reduction effect, than the
power consumption, making cheaper systems with storage heaters a possible alternative to heat pumps.

List of Acronyms

AI Artificial Intelligence
BESS Battery Energy Storage System
CCS Carbon Capture and Sequestration
DHW Domestic Hot Water
HP Heat Pump
EU European Union
GHG Green House Gases
HSS Hybrid Storage System
NWE North West Europe
PV Photovoltaic
RED WoLF Rethink Electricity Distribution Without Load

Following
SHs Storage heaters
The Grid Electric Grid
The UK The United Kingdom of Great Britain and North-

ern Ireland

Variables

𝑏 Back coefficient
𝑇 Horizon period of Execution
𝑡 Time of Execution

1. Introduction

Reduction of green house gases emissions was declared as ma-
jor target on United Nations Climate Change Conference [1]. More-
over, decarbonisation is also one of the main aims of EU (European
Union) [2]. Kotsopoulos [3] analysis suggested that energy conser-
vation strategies and inventions are paramount for the society well
being and overall sustainability. Smart energy usage is one of the main
goals of EU innovation and cooperation programs such as [4,5]. The
report from flo [6] suggested that approximately 30% or 41.1 million of
tonnes of oil equivalent contribute to energy consumption in residential
sector, whereas approximately 15% or 20.7 million of tonnes of oil
equivalent was consumed by public buildings, offices and commercial
facilities. As a result, targeting these sectors with smart energy systems
being valuable in current conditions.

The price of energy varies throughout the day on the wholesale
level as well for time-of-use-tariff or dynamic tariff [7]. Similarly CO2
associated to generated energy unit possess variability [8,9]. Such
phenomena are associated with different power generation sources and
mismatch between cleaner and renewable energy sources and energy
consumption demand. In case there is not enough power supply, less
efficient fossil fuel power stations are started to satisfy the demand
requirements, as other energy sources do not possess flexibility or are

more restrictive. In order to tackle this mismatch energy storage may
be used, to reduce the need of high emission single-cycle on-demand
power plants.

One of the obstacles in energy storage penetration is the high initial
cost. However, that could be reduced by separating energy storage
reservoirs. Thus, adding required flexibility for the electrical grid (the
Grid). Such solution is also relevant for futuristic renewable-only sce-
narios or in combination of thermal plants with carbon capture and
sequestration (CSS) biofuel or both. In such cases the time of energy use
is more significant than amount of power generation, making flexible
energy storage reservoirs the necessary instrument in the prevention of
renewables curtailment.

Significant amount of energy consumption is attributed to space
heating in northern climates, whereas the demand for cooling is much
lower. That makes batteries not being a cost effective solution due
to their high cost per unit of energy capacity. Although, the cost of
batteries is gradually reducing and thus could become of the compara-
ble price, the life cycle and efficiency of contemporary batteries could
contribute to energy loss due to additional energy conversion, making
the separation between storage reservoirs for heating/cooling and other
energy use still a preferable option. However, making the separation of
storage reservoirs and power flows in a dynamic environment signifi-
cantly increase computational complexity for systems that require to be
controlled promptly. Thus requiring control strategies to be developed
or adapted for the purpose, to achieve full benefit of hybrid energy
storage systems.

1.1. State-of-the-art

There is a mismatch between the power consumption demand and
renewable wind [10–12] or solar power generation, such as the ‘‘duck
curve’’ [13,14]. Moreover, wholesale energy price could reach neg-
ative values [15]. The addition of energy storage system, appliance
management or both have potential to reduce the effect of mismatch
or completely negate it as well as exploit the negative energy pric-
ing. The RED WoLF (Rethink Electricity Distribution Without Load
Following) system combines thermal storage, electrochemical storage
as well as renewable power generator in form of PV (Photovoltaic).
These components are comprehensively analysed individually with HSS
(hybrid energy storage systems) that combines multiple elements being
the promising technological solution. The RED WoLF system is aimed
to reduce CO2 emission by storing energy from the grid to mitigate
the mismatch as well as implicitly improve self-consumption of lo-
cal renewable power generation. The relation between CO2 emissions
for various energy systems were investigated thoroughly by Wagh
and Kulkarni [16]; Mohamad et al. [17]; Mohamad and Teh [18];
Grosspietsch et al. [19]. Thus, signifying the importance of energy
management systems for green house gases reduction.

Since there is a mismatch between power generation by the PV
array and power consumption addition of BESS [20,21], or appliances
management [22] or both [23–26] have potential to improve self-
consumption. The latter approach was strongly recommended by Uddin
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et al. [27]. Reports of Sufyan et al. [28],Arani et al. [29] provide
overview over BESS (battery energy storage systems) including BESS
life-cycle and aging of batteries. Wu et al. [30] had focused on artificial
intelligence (AI) applications to improve management BESS. Moreover,
similar results could be achieved by controlling thermal energy stor-
age [28,31]. More efficient technologies like HP (Heat Pump) require
less energy to function with comparison to the direct heating. Nev-
ertheless, both systems could produce heating on demand only with
comparison to storage heaters (SHs) that could also store the energy.
Consequently intake of more polluting energy might be taken from the
electrical grid. Connecting thermal storage reservoirs to HP [32,33]
provide the required flexibility. Reda and Fatima [34] considered the
environmental aspect of HSS with combination of HP, SHs and a
battery. Slightly different HSS with SHs, PV array, DHW (Domestic
Hot Water) Cylinder and a Battery was considered by Shukhobodskiy
and Colantuono [35]. Shukhobodskiy et al. [36] improved the [35]
controlling technique and considered difference between following CO2
signal and time of use tariff. Although all system performs relatively
well in accordance to [37] it is difficult to achieve financial benefit by
implementing BESS only.

The accuracy of consumption forecast traditionally assumed to be
of importance for load flexibility in offices (e.g. [38]), residential
dwellings (e.g. [39]) as well as educational facilities (e.g. [40]). Like-
wise, the precision of the generation forecast is significant for smart sys-
tems power consumption management in offices, residential dwellings
and educational facilities (e.g. [41,42]). As a result, one of important
aspects that is implemented in such systems is control strategy. More-
over, approaches such as reinforced learning could help operate energy
systems equipped with batteries in microgrid (e.g. [43]). Implementing
population models during the learning process have potential to im-
prove the scheduling for the system as shown by Mounsif and Medard
[44]. Though, [45] suggested implementing artificial intelligence to
energy management systems could lead to additional cybersecurity
risks that should taken into account and be mitigated. Furthermore,
AI applications for renewable energy technologies are comprehensively
discussed in [46,47].

Combinations of model predicted control and reactive control are
widely employed in energy management systems. In case of model pre-
dictive control, the forecast of system behaviour should be employed.
Some techniques such as dynamic thermal rating [48,49] have potential
to improve quality of electricity intake. However, for dynamic sys-
tems composed of multiple elements computational complexity provide
significant obstacle for white box (physics based models) to be imple-
mented for multi-component systems favouring black box or hybrid
approaches (combination of black and white boxes) for realistic appli-
cations with computational and temporal constrains (e.g. [42,50,51]).
Such approach is in agreement with [52] that suggested to employ
single threshold RED WoLF algorithm [35] for applications in edge
devices in order to reduce the operational and initial costs for the HSS.

Moreover, [53] presented that adding the demand management
to single threshold approach further improve the performance of the
system, by adding negligible amount of computational time. Thus,
improvement of fast paced algorithm provides interest for realistic ap-
plications. The computational simplicity of the RED WoLF model could
be used to created hybrid neural network (physics informed neural
network) and complement reinforced learning models. Furthermore,
the approach employed for the RED WoLF system algorithm can be
easily comprehended by bachelor and master level STEM (science,
technology, engineering and mathematics) students, without previous
experience in green energy technologies [54]. Thus, making RED WoLF
threshold approach a potentially good educational introduction in un-
derstanding the Grid related CO2 emissions and importance of energy
management systems.

1.2. Novelty

The main contribution of this manuscript is introduction of the
new fast control threshold based technique for hybrid energy storage
systems and its application to residential, public buildings, offices and
commercial facilities, that could accurately react to rapid changes of
CO2 emission forecast as well as power generation and power consump-
tion predictions. Furthermore, the proposed RED WoLF system can now
allow employment of HPs combined with battery or thermal storage
(water tank, radiators), in contrast to most previous configurations
that consider only SHs, DHW Cylinders, combined with battery storage
and local PV array (e.g. [35]) or system only equipped with a HP
accompanied by thermal storage and local PV array (e.g. [42]). [36] in-
troduced progressive adaptive double threshold algorithm for the RED
WoLF HSS [35]. Here a recursive progressive adaptive multi threshold
algorithm is introduced and compared with primal dual simplex optimi-
sation technique [55] and other RED WoLF controllers [35,36,56]. The
results of numerical experiment are presented in this manuscript for
both computational speed and performance comparison of algorithms
for CO2 reduction. Then the RED WoLF algorithm is tested in a case
study for residential dwelling, an office and large school located in Lux-
embourg. The office and the school are equipped with battery storage
and PV array as well as ground source HP. The grid consumption and
CO2 emissions of the RED WoLF controller is compared with measured
data for various scenarios including the system equipped with more
power consuming and much cheaper SHs, rather than more expensive
heat pumps. Moreover, these comparisons are rare, since only few
systems outside of RED WoLF HESS, employ combination of SHs, DHW
Cylinder, Battery and PV array as well as considering reduction of
CO2 emissions being the ultimate goal of the system. As a result, this
manuscript addresses three research gaps. The lack of novel develop-
ment and implementation of threshold based controllers and potential
ways of their evolution. The lack of intraday assessment of differences
between CO2 emissions reduction and associated electrical power grid
reductions. The lack of HESS components comparison and CO2 intensity
forecast errors consideration for hybrid energy management systems.

2. System design and controlling algorithm

2.1. System design

The RED WoLF system benefits the environment by reducing the
CO2 emissions through improvement in the self-consumption and the
Grid power consumption in the facility via smart controls. Previously
the RED WoLF system was analysed in residential dwellings only (35,
36,52,56,57). In the present manuscript, the analysis is extended to
for public buildings and offices and thus technologies such as HPs
are incorporated to the control architecture of the RED WoLF system.
The brief graphical description of the system is illustrated on Fig. 1.
With the aid of local smart controller the RED WoLF is managing the
power flow within the building. The devices could be separated into 5
different categories: the ones that can control (Smart Controller), the
ones that can produce the power (Power Supply on Fig. 1), the ones
that can store the energy (Energy Storage on Fig. 1), the ones that
process the information (Data and Control on Fig. 1) and the ones the
can only consume the power (Electrical Appliance on Fig. 1). Smart
controller manages energy in several ways. First of all, it collects the
information about the power consumption of devices involved in the
RED WoLF information and sends in to the cloud server. In return
smart controller receives sets of instructions for controllable elements
of energy storage. In case the building equipped with HP connected
to the thermal storage reservoirs then it is also being considered as
a storage for DHW or space heating or both. The remote server is
hosting the forecast service, where implementation of machine learning
prediction models are implemented for the power consumption and
generation, for each individual dwelling. On the same server the RED
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Fig. 1. RED WoLF main components.

Fig. 2. RED WoLF Power Flow. Green arrows represent the energy flowing from the PV array, orange arrows represent the energy flow from the Grid, yellow line represents the
energy flow from the Battery, dashed yellow line represents the optional energy flow from the battery to the HP or other space heating storage system and the grey line represents
the thermal power flow from the HP to the thermal energy storage. All the icons depicted on this illustration are taken from [58]. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

WoLF algorithm computes the necessary control commands for energy
management systems.

In order to avoid stored energy waste, the battery is only allowed
to be used on electrical appliances, so there is no double conversion
between energy stored in electrochemical storage and thermal storage.
This configuration is depicted in Fig. 2. The preferred energy source is
the PV array, which is depicted as green arrows, and thus the power
could be directed to all devices within the system. Similarly the Grid
power is also allowed to be send to all devices. However, it is only used
in the absence or insufficiency of renewable source and the use of stored
energy would contribute to more CO2 emissions or increase of price,
whenever time-of-use-tariff is implemented. Indeed in some case in ac-
cordance to Octopus Energy Agile tariff [7] the retail Energy price could
have negative values making the Grid preferable power source to local
renewable power. There is also an optional ability to supply heating
elements for thermal storage in a battery whenever it is more beneficial
to reduce the GHG emissions or annual price, for systems with limited

thermal storage. This could be the case if the system already has for
example a HP and a battery of large capacity but lacks the thermal
energy storage or its capacity is not sufficient. One example of such
system could be ground sourced HP that distribute the energy through
the series of pipes in a floor, in a ceiling, in walls or any combination
of those. This system lacks the separate (discrete) thermal storage such
as SHs. As a result such deviation allows additional functionality to the
system by allowing battery usage for space heating application could
be beneficial for GHG reduction. In this case the control strategy will
treat HP as part of appliances for the required consumption needs for
all the daily energy requirements that exceed the maximum capacity
of thermal storage reservoirs. Although such strategy is not the most
efficient one, it would allow to control existing systems without the
need of retrofit, whereas newly constructed buildings should avoid such
configuration.

The proposed [59] system is undergoing the testing phase in ≈
100 residential dwellings across north-west Europe, in Ireland, France,
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Luxembourg and the UK. With newly added Luxembourg pilots being
equipped with ground source HPs and thermal storage instead of SHs.

2.2. Controlling algorithm

The foundation of the algorithm implemented for the control strat-
egy is described in [36] and is briefly introduced in Appendix. Since
then, significant improvements have been implemented to achieve
better performance. The new approach is introduced in this manuscript
and could be described similarly to the recursion process that modified
the original RED WoLF control strategy [35] by Wiesheu et al. [56].
Though, the proposed recursion is now implemented for the adaptive
double threshold approach presented in [36] and the recursion ap-
plied only to the main threshold. The schematic description of such
modification is depicted on Fig. 3

Here the description starts from the middle panel on Fig. 3 that
corresponds to the algorithm described in [36], however instead of
original 24 hours horizon 48 hours horizon is implemented. This hori-
zon is updated every 24 hours. The numbered yellow boxes correspond
to important steps within the algorithm. In the panel before step one
there is CO2 intensity index forecast for 48 hours period at time 𝑇𝑛
which is then updated into new 48 hours forecast horizon at 𝑇𝑛 + 24.
In between these steps the new forecast for CO2 intensity is updated
hourly, within the current horizon interval. Furthermore, during 24
hours period starting from time 𝑇𝑛 the horizon is unchanged unless it
reaches the value 𝑇𝑛+24, where 𝑇0 is initial starting time of the system.
Thus, the connection between 𝑇𝑛+1 and 𝑇𝑛 is given by

𝑇𝑛+1 = 𝑇𝑛 + 24 h. (1)

At time 𝑇𝑛 the targets for energy storage are set and forecast. These
targets must be satisfied by the end of 48 hours horizon period. These
targets are updated at least at 24 hours period which is novel to the
process and would insure the smoothness of operation. Though, the
resolution could be arbitrary but not less than threshold calculation
resolution. Then at step one the CO2 intensity index is sorted in
increasing order to allow two thresholds: main threshold and aux-
iliary threshold being calculated by the method described [36] and
briefly in Appendix. This allows to select time intervals for which
the storage reservoirs would be charged and battery would be used.
These periods are coloured in green and yellow colours respectively
on Fig. 3. The green area is corresponding to the minimum amount of
time for the grid electricity being directed to the dwelling. This time
is calculated by estimating the difference between forecast of energy
consumption and forecast of energy generation within the dwelling
divided by maximum possible power intake from the Grid. Every value
of sorted CO2 intensity correspond to specific time. By selecting the
lowest execution region of CO2 intensity index, the process also allows
to obtain corresponding temporal values. Then this time intervals are
distributed across the original non-sorted CO2 values by matching the
time with corresponding CO2 intensity levels. The process is similar
for the yellow region and corresponds to time of battery discharge.
However, selection is done for the sorting CO2 intensity index at period
of high levels of CO2 intensity. Once this procedure is done we know
the approximate minimum time of grid use as well as approximate time
required for battery to be discharged. At step 2 we apply these areas to
original CO2 intensity forecast and implement the control commands of
the algorithm on 1 minute resolution for one hour. Then, at step 3 the
CO2 intensity forecast the execution is employed for 𝑡 hours, 1 < 𝑡 ≤ 24.
Thus, removing initial 𝑡 hours from the CO2 intensity forecast and
execution. Afterwards we repeat sorting procedure 1, however on the
shorter time interval and in step 5 execution of such process begins.
This cycle is of steps 3 to 5 is repeated until 𝑡 reaches value of 24
hours, afterwards in step 6 the new horizon is picked, here depicted
as orange area. Important step to note is that after every hour of the
execution the new forecast of CO2 intensity is generated, dwelling
consumption is metered and charge levels of storage reservoirs are

measured/estimated and new thresholds are calculated to satisfy the
initial or modified storage target. This process makes the threshold
adaptive to intraday changes. Once the new horizon is selected, the
whole procedure repeats.

Now the most significant novelty is the recursive correction to
threshold calculations. Instead of executing the RED WoLF algorithm
directly. The first step is to emulate the performance of the system in
order to try to avoid direct use of electricity for DHW consumption
and space heating. This procedure is depicted on the bottom panel
at Fig. 3 under the box ‘‘Threshold Recursive’’. All steps repeat the
process of previous threshold calculation, however the new process is
added. In case during the simulation phase there was a period of the
direct space heating or domestic hot water usage during the execution
(depicted as burgundy area in step 2), then modification to the forecast
horizon is made and the back coefficient, 𝑏, is calculated. The back
coefficient, 𝑏 is the novel addition to the threshold calculation and
is aimed to compute how many additional time periods are required
to be added to the system schedule, so that the charging on demand
is not forecast. Initially the coefficient for the 48 hours horizon is
set up to be 0. Nevertheless, every time during 24 hours execution
period back coefficient increases its value by 1 hour, whenever the
event of direct usage of space and DHW occurs during the simulation.
Moreover, once such event occurs whole simulation returns to the first
procedure in the cycle, that determines the horizon forecast. However,
now there is an updated back coefficient. The back coefficient works in
a way similarly to the adaptive threshold update through time, however
instead of removing initial hours from the forecast horizon for main
threshold it adds 𝑏 hours of extra storage time for the main threshold.
In more details it insures that the areas corresponding to low CO2
emissions are exploited (depicted as red area at step 3), rather than
the burgundy area in previous step. Thus, increasing the amount of
time for storage reservoirs to be charged at step 4 and then at step
5 new thresholds and execution periods are received. This procedure
repeats until 𝑏 reaches the value of 47 hours, or no events of direct
heat usage occurred during simulation phase. As a result, the correction
to threshold calculation is aimed to further reduce CO2 emissions, by
improving control over power intake in periods of low CO2 intensity
levels. Similar correction was introduced in [56] for the Original RED
WoLF algorithm described in [35], though have not improved the
algorithm performance significantly.

2.3. Comparison of controlling algorithms

In this subsection there is a comparison between RED WoLF Orig-
inal Algorithm [35], RED WoLF Double Threshold Algorithm [36],
RED WoLF Multi Threshold Recursive Algorithm introduced in this
manuscript and Primal Dual Simplex Method ([55,60]). The latter is
considered to be the case which is close to ideal global optimum
solution. In order to proceed with Primal Dual Simplex Method, the
pre-processing procedure [61] is employed to remove constrains and
redundancies.

For this comparison the available annual CO2 intensity data for the
UK [8] at 2019 is employed. The PV generation profile from [62] and
the power consumption profile from [63]. These datasets were previ-
ously employed in [36,64]. Moreover, the [63] data were detrended
from any seasonal dependencies and scaled to average UK data [65]
of 5 MWh. Moreover, the assumption is that the heating period starts
in October and finishes at March with peak of 80 kWh day in January
to 0 kWh in March. The DHW Cylinder of 10.5 kWh capacity and is
assumed to be used from 7:00–7:50 in the morning and 17:30–18:20
in the evening. That is the period when the energy is drained from
this storage reservoir. Furthermore, the battery capacity to be is chosen
to be between 0–10 kWh. The PV array peak power varies from 0 to
10 kWh. It is also assumed the power supply is average for the UK
household with maximum power intake from the Grid of 25 kW. As a
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Fig. 3. Threshold Calculation Diagram. The top panel corresponds to the legends. The middle panel corresponds to standard calculation. The bottom panel corresponds to recursive
update. Numbered yellow boxes correspond to significant steps in the algorithm. Shaded areas in steps 1 and 4 represent sections of Grid power intake on chronologically sorted
CO2 values. Shaded areas in step 2 map main threshold regions and auxiliary threshold regions from intensity-sorted CO2 values back to chronologically-sorted CO2 values. Shaded
areas in steps 3 on middle and bottom processes represent time progression and thresholds correction respectively. Shaded areas in step 5 represents planned execution of the
algorithm and map main threshold regions and auxiliary threshold regions from intensity-sorted CO2 values back to chronologically-sorted CO2 values. Step 6 represents forecast
update. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

result it is possible to compare the controlling techniques. The Primal
Dual Simplex algorithm is used as benchmark to compare performance
and in contrast to RED WoLF controller is made in 1 h resolution steps,
rather than 1 min step. All numerical calculations are made on Python

3.6 Spider GUI 5.1.5, AMD Ryzen 7 5800H, Radeon Graphics 3.20 GHz,
on Windows 11 OS. Results are presented on Fig. 4.

Primal Dual Simplex method still demonstrates the best accuracy.
Since the average saving with Primal Dual Simplex algorithm are ≈ 69%
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Fig. 4. Performance improvement comparison graph. The Blue box represent the Primal Dual Simplex, The green box represents Recursive Multi-Threshold RED WoLF Control
Algorithm, the orange box represents Double Threshold RED WoLF Control Algorithm and the red box represents the original single threshold RED WoLF algorithm. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Computational time controller performance comparison graph. The Blue box represent the Primal Dual Simplex, the green box represents Recursive Multi-Threshold RED
WoLF Control Algorithm, the orange box represents Double Threshold RED WoLF Control Algorithm and the red box represents original single threshold RED WoLF algorithm.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

that would make RED WoLF Multi Threshold approach suboptimal only
by ≈ 4%. This difference is smaller than errors for CO2 intensity and
power consumption forecasts and thus might be neglected. For example
root mean square percentage error for CO2 is ≈ 24% in 2018, ≈ 73% in
2019, ≈ 8.6% in 2020, ≈ 7.5% in 2021 and ≈ 7.5% in 2022, in the UK in
accordance to [8] data. Thus, the aggregate error for forecast would be
even higher. Besides, the algorithms are much faster, with Primal Dual
Simplex performance speed for one minute resolution being estimated
to be over ≈ 3000 minutes, whereas the average speed of RED WoLF
Multi-Threshold approach could vary between ≈ 10 and ≈ 30 minutes
for annual simulations and take seconds for one day. These allow RED
WoLF HSS to be implemented on and benefit from edge systems, or in
case of more powerful computational device be part of more complex
demand response system. Similar conclusion was made in [52] for the
original RED WoLF HSS controller. Still, the RED WoLF algorithm was
not optimised for faster performance and thus the execution speed
might increase once this target would be set. The current comparison of
computational speed of algorithm performance is presented on Fig. 5.

It is noted that, although there was slight speed increase due to
introduction of additional thresholds and the recursion process this

increase is still negligible, with comparison to the Primal Dual Simplex
Method. Moreover, [52] demonstrated that the original RED WoLF
Single Threshold Approach is significantly faster than [66] technique
with speeds of ≈ 1 ms vs over ≈ 20 minutes computational time and
had less charge and discharge cycles with ≈ 2–≈ 3 less operational
cycles implemented. The controller introduced in this manuscript has
≈ 329 of charge/discharge cycles during the year, whereas Single
Threshold method has ≈ 238 of charge/discharge cycles and Primal
Dual Simplex Method, has ≈ 394 charge/discharge cycles. We should
note that neither of algorithms are aimed to minimise the rate of charge
and discharge, and such phenomena occurs most likely naturally due
to sinusoidal profile of grid CO2 intensity index. By setting up a target
of battery use throughout the day, the algorithm implicitly controls the
charge/discharge cycle.

Moreover, since the algorithm operates with forecast values of con-
sumption for appliances, domestic hot water, space heating and carbon
intensity index. The accuracy of execution would be dependent on the
accuracy of prediction. However, the effect of prediction with signifi-
cant errors is mild for the RED WoLF algorithm, as is was designed with
assumption that it is difficult to achieve precise predictions in open
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Table 1
Annual CO2 emission in tons in the office and in the school.
Top row, corresponds to CO2 emissions in the school. Bottom
row corresponds to CO2 emissions in the office. The left
column corresponds to the RED WoLF system equipped. The
middle column corresponds to emissions of the system without
battery storage and PV array. The right columns corresponds
to emissions of corresponding to measured values.
RED WoLF Direct consumption Original

343.9 t 292.5 t 135.8 t
9.7 t 11.3 t 8.1 t

dynamic systems, and thus must adapt promptly to constant changes
in environment. Making the method prominent even for cases, where
there is not enough data to create sophisticated predictions of power
consumption and generation. The downside is that the result might be
suboptimal for highly accurate predictions, and thus the RED WoLF
algorithm might perform worse if there are only a few components to
operate and change in the environment is less dramatic.

3. Case study: Application of RED WoLF in public buildings and
offices

In this section the performance of the RED WoLF system is analysed
for an small office and public school in Luxembourg area. The data
for the numerical experiment was obtained from two Luxembourg
companies [67,68]. The data analysed and employed in numerical ex-
periment is from the school that has gross floor area of 46,000 m2 with
energy reference area (the area of energy usage) being 32,200 m2, with
reference heat demand of 2, 254, 000 kWh and annual electricity con-
sumption of 807,000 m2. The school is equipped with a ground sourced
HP of maximum power of 307 kW, 437 kW PV array, combined battery
capacity of 1441 and no discrete thermal storage (thermal storage water
tanks). Whereas the office is much smaller in area of approximately
600 m2. The office is equipped with 80 kWh battery and 30 kW PV
array and a ground sourced HP without domestic hot water storage.
The numerical experiment includes addition of thermal reservoirs,
reduction of battery and solar capacity and comparison of the outcomes
with measured data. The addition of thermal reservoirs is aimed to
reduce initial investments since thermal storage is significantly cheaper
than electrochemical counterparts [36] and would allow the reduction
of battery capacity. Thus, 2000 kWh and 100 kWh, thermal storage
reservoirs (thermal storage water tanks) for space heating were added
to the school and to the office respectively for the performance com-
parison. There is also additional analysis for implementation of RED
WoLF algorithm just to control the battery and allow power flow to the
heating system. Moreover, the addition of thermal storage to HP might
slightly increase energy consumption of the system [69], however this
effect is negligible whenever the temperature of storage is set for 45
– 55 C◦. Nevertheless, the assumption the overall daily consumption
for space heating and domestic hot water is increased by 5 % in case
thermal storage was added to the system. This value is much higher
than ≈ 1% noticed by Arteconi et al. [69], however such increase allows
to reduce the chance of overestimation of monthly and annual systems
performance. In addition to that standard RED WoLF configuration [35]
with SH and domestic hot water cylinder is compared with measured
consumption. Since in both system space heating is based on usage of
the resistor rather than thermal machine, the daily consumption for
space heating is assumed to be 4 times of the measured. Slightly higher
than the medium COP of HP of 3.6, [70].

On Table 1 it is demonstrated that the system equipped with SH
have comparable performance to the system equipped with a HP,
without storage reservoirs. In case of the school emissions with RED
WoLF HSS equipped with SH are slightly higher. However, in case of
the office opposite statement is valid. In all cases the RED WoLF HSS
with SHs, performs worse than a system equipped with HP and Thermal

Storage Water Tanks. As a result, the RED WoLF HSS could become
an alternative to HP, where restrictions or implementation makes it
difficult to install the latter.

The RED WoLF with SH could be a financially beneficial option for
smaller facilities, since HP require significant initial investments and
potential major building redesign [36]. Currently the average price per
peak power for PV array is ≈ 2,000 GBP per peak kW. Thus making
the price of 437 kW peak PV array to be ≈ 874,000 GBP. Moreover,
the average price of the ground source HPs installation could vary
from ≈ 17,000 GBP for 4 kW peak power to ≈ 35,000 GBP for 13
kW peak power. Leading, to 307 kW peak power ground sourced HP
cost of ≈ 826,537 GBP. In the worst-case scenario storage heaters or
thermal store consume on average 4 times more electrical energy than
a HP. As a result, more expensive of the shelf SHs such as Quantum
Dimplex with output power of 1.5 kW would cost ≈ 623,055 GBP,
whereas medium priced Elnur SHs with the same output would cost ≈
508,109, with some of the cheapest manual models having price as low
as ≈ 163,000 GBP. All these models are supported by the RED WoLF
controller. Furthermore, reducing the size by of the PV array in half by
the means of the RED WoLF controller would save ≈ 437,000 GBP. As
a result financial savings from the system implementation are expected
to be at least of ≈ 1,000,000 GBP. Moreover, the addition of a thermal
storage to ground sourced HP might vary in price from ≈ 30,000 GBP to
≈ 160,000 GBP, depending on if the storage unit is single or there are
many units of smaller size. This leads to RED WoLF controller allowing
more moderate savings of ≈ 277,000 GBP.

Now, since each SH could act independently they have potential to
satisfy different space heating requirements throughout facilities. Thus,
creating with ease different thermal areas within one facility that could
be useful for comfort or industrial processes. Results of the analysis are
very promising; however the lack of widespread availability of time-of-
use or dynamic tariffs such as [7], reduces the financial benefits of the
RED WoLF system. Nevertheless, such energy tariffs emerge in more
and more regions including NWE.

The results of numerical experiment are discussed below. Fig. 6
demonstrates that system with RED WoLF controller is beneficial and
have potential to reduce CO2 emissions even for systems equipped with
reduced PV array. Moreover, separation of storage reservoirs is slightly
more beneficial, than system equipped only with battery. Additionally,
the RED WoLF controller has the ability to reduce the grid consumption
as depicted in Fig. 1. However, this effect is more moderate with
comparison to CO2 emissions reduction. Furthermore, reducing the size
of the PV by half slightly increases the overall consumption from the
Grid. Intriguingly, monthly emissions as depicted on Fig. 8, although
in general follow the pattern of annual emissions in some months.
March, April, September and October the system equipped with smaller
PV array produces more emissions. Though, systems with smaller PV
array have significantly less emissions during winter months. This
phenomenon could be due to lower overall PV power generation during
winter months and increased consumption and thus storage control
has more prominent effect, than local power generation. Moreover, in
warmer month there is less demand for heating and generated renew-
able power cover the consumption requirements even with smaller PV
array. Whereas, in intermediate periods there is lack of local generated
power that storage of grid electricity during time intervals of lowest
CO2 index control does not fully compensate. RED WoLF with thermal
storage was estimated to consume less grid electricity than original
measured consumption. The same hold in general true for the system
equipped with the battery storage only, however in some months the
consumption could be higher. As expected with lower PV array there is
more grid consumption in all months. Overall even the RED WoLF is not
aimed to improving self-consumption of the facility it does it implicitly
while reducing the CO2 emissions (see Fig. 7).

Annual grid consumption (Fig. 11) and CO2 emissions (Fig. 10)
from the school have similar structure to one noticed in office. The
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Fig. 6. Annual Emissions of CO2 in the Office. The brown box corresponds to CO2 emissions in the absence of PV array. The orange box corresponds to measured CO2 emissions.
The red box corresponds to estimated CO2 emissions with RED WoLF system with PV array being 0.5 size of the original one. The blue box corresponds to estimated CO2 emissions
with RED WoLF system in the absence of heat storage. The green box corresponds to estimated CO2 emissions with full RED WoLF system. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Annual grid consumption in the Office. The brown box correspond to the grid consumption in the absence of PV array. The orange box correspond to measured grid
consumption. The red box correspond to the estimated grid consumption with RED WoLF system with PV array being 0.5 size of the original one. The blue box correspond to the
estimated grid consumption with RED WoLF system in the absence of heat storage. The green box correspond to the estimated grid consumption with full RED WoLF system. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

reduction of the PV array and implementation of the RED WoLF al-
gorithm reduces CO2 emissions. However, it also increases the power
intake from the Grid. Furthermore, doubling the size of the thermal
storage may lead to improving reduction of CO2, with comparison to
the double increase of the battery capacity. Nevertheless: the statement
is opposite for power consumption, the system with double thermal
storage consume more energy than system with doubled battery storage
(see Fig. 9).

Monthly CO2 emissions in the school are depicted on Fig. 12. It
could be observed, that the system without PV array and energy storage
have the most emissions. Furthermore, systems with the original size of
PV array have no CO2 emissions during summer months. The proposed

RED WoLF system have produced no emissions also in May. Neverthe-
less, from, February till October the system with half sized PV array
emits more CO2 than the original system. Though, in the remaining
months such configuration performs better. As expected the proposed
RED WoLF configuration equipped with thermal storage water cylinder
performs better in all months, with second best system being the one
with only battery storage controlled by the RED WoLF algorithm, with
exception to two months: January and December.

Similarly monthly grid consumption in the school is presented on
Fig. 12. Likewise, systems equipped with original PV array and in the
presence of storage, have not consumed grid electricity during Summer
months. Moreover, the RED WoLF system also have not consumed
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Fig. 8. Monthly Emissions of CO2 in Office. The cream box corresponds to CO2 emissions in the absence of PV array. The orange box corresponds to measured CO2 emissions. The
red box corresponds to estimated CO2 emissions with RED WoLF system with PV array being 0.5 size of the original one. The blue box corresponds to estimated CO2 emissions
with RED WoLF system in the absence of heat storage. The green box corresponds to estimated CO2 emissions with full RED WoLF system. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Monthly grid consumption in the Office. The orange box corresponds to measured grid consumption. The cream box corresponds to the estimated grid consumption with
RED WoLF system with PV array being 0.5 size of the original one. The blue box corresponds to the estimated grid consumption with RED WoLF system in the absence of heat
storage. The green box corresponds to the estimated grid consumption with full RED WoLF system. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

any power from the Grid in May. Yet, with exception to January and
December less grid electricity is consumed by with RED WoLF HSS.
Furthermore, in case there is no thermal storage and RED WoLF control
is present the previous statement holds true also in November. As
expected of all systems with RED WoLF control strategy the system
with half sized PV array consume more electricity from the Grid in all
months, due to lack of local renewable power generation.

Overall, the application of the RED WoLF algorithm in both cases of
the school and the office reduces both CO2 emissions and consumption
annually. Moreover, the addition of the RED WoLF controller have
also potential to produce lower CO2 emissions for systems with smaller
PV arrays, thus improving the self-consumption of targeted facility. As
a result, less initial investment could be required to achieve similar
performance and has the ability to facilitate penetration of RED WoLF
HSS. The proposed RED WoLF HSS has potential to save ≈ 30 tonnes
of CO2 annually for the school, which is ≈ 22 % improvement. In case
of the office the RED WoLF HSS has potential to ≈ 1.3 tonnes of CO2,
that corresponds to ≈ 16 % improvement. Less prominent reduction is
noticed in case of the annual grid consumption ≈ 39, 520 kWh, ≈ 6.5
% for the school and ≈ 3586 kWh, ≈ 10 % for the office. Furthermore,
the RED WoLF control architecture have potential to improve off-grid
performance (see Fig. 13).

4. Conclusion

The progressive adaptive double threshold approach has been im-
proved to recursive progressive adaptive multi threshold approach.
Heat pumps connected with thermal storage (thermal storage water
tank, thermal storage radiators, combination of previous ones with

storage heaters) or with battery are now supported by the RED WoLF
controller. The newest control strategy outperformed the original RED
WoLF single threshold approach by improving the reduction of CO2
emissions by ≈ 26% and ≈ 9% to RED WoLF progressive adaptive
double threshold approach. Though, underperformed with comparison
to Primal Dual Simplex Method by ≈ 4%. Despite that, since the root
mean square percentage error for CO2 is at least ≈ 7.5%, could be as
high as ≈ 73% and aggregate errors of forecast signals would be even
higher, making approaches with higher accuracy not required for CO2
reduction purposes. Although this phenomena could be more relevant
for cases where predictions become more accurate. However, the speed
of calculation for the RED WoLF algorithm is at least 100 times faster,
making the RED WoLF controller suitable for embedded systems or to
increase the resolution of control system possible. Moreover, the con-
troller also allows slight reduction of charge/discharge cycles annually
for battery storage ≈ 394 cycles for system equipped with primal dual
simplex method, ≈ 329 cycles for systems equipped with RED WoLF
recursive progressive adaptive multi threshold approach and ≈ 238
cycles for system equipped with RED WoLF progressive adaptive single
threshold approach. Furthermore. all these methods have significant
reduction in storage cycles with comparison to Olivieri and McConky
controller in accordance to previous comparison of the latter with RED
WoLF single threshold approach.

Results of numerical experiment suggest that the system equipped
with RED WoLF controller outperforms both in reducing CO2 emis-
sions and electrical grid consumption of the system equipped with
heat pump, photovoltaic array and battery with on default (non RED
WoLF) logic control for the school and the office in Luxembourg. On
default control has no sophisticated logic and battery is charged by
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Fig. 10. Annual Emissions of CO2 in the School. The brown box corresponds to CO2 emissions in the absence of PV array. The orange box corresponds to measured CO2 emissions.
The red box corresponds to estimated CO2 emissions with RED WoLF system with PV array being 0.5 size of the original one. The blue box corresponds to estimated CO2 emissions
with RED WoLF system in the absence of heat storage. The purple box corresponds to estimated CO2 emissions with RED WoLF system in the absence of heat storage however
with doubled battery capacity. The green box corresponds to estimated CO2 emissions with full RED WoLF system. The yellow box corresponds to estimated CO2 emissions with
full RED WoLF system and doubled thermal storage. The cyan box corresponds to estimated CO2 emissions with full RED WoLF system and doubled thermal storage and doubled
battery capacity. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Annual grid consumption in the School. The brown box corresponds to the grid consumption in the absence of PV array. The orange box corresponds to measured grid
consumption emissions. The red box corresponds to estimated grid consumption emissions with RED WoLF system with PV array being 0.5 size of the original one. The blue box
corresponds to estimated grid consumption with RED WoLF system in the absence of heat storage. The purple box corresponds to estimated grid consumption with RED WoLF
system in the absence of heat storage however with doubled battery capacity. The green box corresponds to estimated grid consumption with full RED WoLF system. The yellow
box corresponds to estimated grid consumption with full RED WoLF system and doubled thermal storage. The cyan box corresponds to estimated grid consumption with full RED
WoLF system and doubled thermal storage and doubled battery capacity. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

photovoltaic array by excess of generated power. Such performance is
quite good, as most of consumption in facilities, that operate in average
9 – 5 working hours, occurs during the time whenever photovoltaic
power is also generated. Furthermore, the reduction of CO2 emissions
is more prominent than electricity intake from the grid. Additional ele-
ments such as thermal storage could further improve the performance.
Even decreasing photovoltaic array by half still have better estimated
performance than system without control, thus allowing to reduce
significantly the overall initial investment to the energy management
system. Intriguingly, the system equipped with storage heaters, have
potential to reduce more CO2 emissions than systems with heat pump

in absence of photovoltaic array and battery storage, despite storage
heaters consuming at least 3.6 more power, that further could amplify
reduction of initial investments. In the office CO2 emissions with RED
WoLF controller and SHs as heating system are ≈ 9.7 tonnes, are ≈ 11.3
tonnes for direct heat pump consumption and are ≈ 8.1 tonnes for
system with default control strategy. Making system equipped with
storage heater a cheaper alternative to systems equipped with heat
pumps, where the installation of latter is not cost-effective solution.
Nevertheless, the example of the school system equipped with heat
pump leads to ≈ 2.5 times more CO2 emission savings than system with
storage heaters. Thus, additional assessment is required to analyse cost
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Fig. 12. Monthly Emissions of CO2 in the School. The brown box corresponds to CO2 emissions in the absence of PV array. The orange box corresponds to measured CO2 emissions.
The red box corresponds to estimated CO2 emissions with RED WoLF system with PV array being 0.5 size of the original one. The blue box corresponds to estimated CO2 emissions
with RED WoLF system in the absence of heat storage. The green box corresponds to estimated CO2 emissions with full RED WoLF system. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Monthly grid consumption in the School. The brown box corresponds to the grid consumption in the absence of PV array. The orange box corresponds to measured grid
consumption emissions. The red box corresponds to estimated grid consumption emissions with RED WoLF system with PV array being 0.5 size of the original one. The blue box
corresponds to estimated grid consumption with RED WoLF system in the absence of heat storage. The green box corresponds to estimated grid consumption with full RED WoLF
system. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

benefits to comprehend which selection is better for each particular
case.

As a result, the RED WoLF controller has ability to be implemented
both in residential, public facilities, offices and commercial facilities.
The speed of the RED WoLF computation allows the algorithm to
be implemented on edge systems or to control multiple systems with
server, for example the RED WoLF controller is able to govern energy
management systems in 100 pilot houses with medium performance
RAC server. The performance in CO2 reduction is comparable with
primal dual simplex optimisation. The adaptable mechanism applied
in the system allows the storage targets to be changed during control
implementation on intraday basis, as well as the system is designed
to guarantee that all storage targets will be met, even if the perfor-
mance is suboptimal, that is important for employment in multiple
disjoint facilities, where underperformance is not acceptable, such as
social houses. Making the RED WoLF simulation environment having
potential application in fast assessment of environmental, financial
performance of energy management systems. Furthermore, successful
implementation of RED WoLF Controller in educational programmes
benefit students to understand grid related carbon emissions as well
as introduce to energy management systems, without necessity of any
prior field specific knowledge.
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Appendix. Threshold calculation

The main mathematical formulation behind the double-threshold
approach described in [36] is presented here in order to facilitate
comprehension of Section 2.1.

There are constantly changing variables (Table A.2) associated with
dynamic environment as well as static parameters associated with
physical properties of energy storage reservoirs (Table A.3) crucial to
thresholds calculation. The algorithm is deciding whether to charge or
idle thermal storage and whether to charge, discharge or idle electro-
chemical storage in the form of a battery. The decision to charge energy
storage reservoirs from the grid is made if the target signal is below
the main threshold. The decision to discharge battery is made if the
target signal is above the auxiliary threshold. Moreover, the battery
stops charging from the grid if there is no more predicted power intake
to appliances in the next 24 h. These predictions are then updated every
hour. In summary thresholds are designed to calculated the minimum
averaged amount of time required for the system to fully charge storage
reservoirs from the electrical grid and to use battery storage during
hours with high CO2 emissions.
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Table A.2
List of variables.
𝐵𝐷 Battery demand in kW.
𝐵𝐿𝑒𝑣𝑒𝑙 Battery level in kWh.
𝐶𝐷 Water Cylinder Demand.
𝐶𝐿𝑒𝑣𝑒𝑙 Water Cylinder Level in kWh.
𝐶𝑆𝑒𝑡𝑢𝑝 Water Cylinder Level Storage Target in kWh.
�̃�𝐷 Space Heating Demand in kW.
�̃�𝐿𝑒𝑣𝑒𝑙 Space Heating Level in kWh.
�̃�𝑆𝑒𝑡𝑢𝑝 Space Heating Level Storage Target in kWh.
𝑃𝑃2𝐴 Predicted Power Consumption by Appliances in kW.
𝑃𝑃𝑉 Predicted Power Generation by PV Array in kW.
𝑄 CO2 intensity level prediction in gCO2/kWh.
𝛿 Main threshold in gCO2/kWh.
𝛿aux Auxiliary threshold in gCO2/kWh.

Table A.3
List of parameters.
𝐵𝑀𝑎𝑥 Maximum Rate of Power intake by a Battery in kW.
𝐵𝐿𝑀𝑎𝑥 Maximum Capacity of a Battery in kWh.
𝐶𝑀𝑎𝑥 Maximum Rate of Power intake of a Water Cylinder in kW.
𝐶𝐿𝑀𝑎𝑥 Maximum Energy Storage Level of a Water Cylinder in kWh.
�̃�𝑀𝑎𝑥 Maximum Rate of Power intake of a Space Heating System in kW.
�̃�𝐿𝑀𝑎𝑥 Maximum Energy Storage Level of a Space Heating System in kW.

In order to calculate the main threshold first the demand for energy
storage is established

𝐵𝐷 = 𝐵𝑀𝑎𝑥𝐻(𝐵𝑆𝑒𝑡𝑢𝑝 − 𝐵𝐿𝑒𝑣𝑒𝑙)𝐻(𝐵𝐿𝑀𝑎𝑥 − 𝐵𝐿𝑒𝑣𝑒𝑙),

𝐶𝐷 = 𝐶𝑀𝑎𝑥𝐻(𝐶𝑆𝑒𝑡𝑢𝑝 − 𝐶𝐿𝑒𝑣𝑒𝑙)𝐻(𝐶𝐿𝑀𝑎𝑥 − 𝐶𝐿𝑒𝑣𝑒𝑙),

�̃�𝐷 = �̃�𝑀𝑎𝑥𝐻(�̃�𝑆𝑒𝑡𝑢𝑝 − �̃�𝐿𝑒𝑣𝑒𝑙)𝐻(�̃�𝐿𝑀𝑎𝑥 − �̃�𝐿𝑒𝑣𝑒𝑙),

where 𝐻(𝑥) is a Heaviside step function, the demand function have
starting value in the domain being 0 and end value being  . Here  is
a horizon period of the algorithm execution. Then the integral balance
of the system for the selected period of  hours is defined as

 = ∫



𝑡
𝑃𝑃2𝐴(𝑡) − 𝑃𝑃𝑉 (𝑡)𝑑𝑡 + 𝐶𝑆𝑒𝑡𝑢𝑝 − 𝐶𝐿𝑒𝑣𝑒𝑙

+ �̃�𝑆𝑒𝑡𝑢𝑝 − �̃�𝐿𝑒𝑣𝑒𝑙 , (A.1)

where 𝑡 is the current execution time within  hours period. If �̃�𝐿𝑀𝑎𝑥
�̃�𝑆𝑒𝑡𝑢𝑝 or 𝐶𝐿𝑀𝑎𝑥 < 𝐶𝑆𝑒𝑡𝑢𝑝 then �̃�𝑆𝑒𝑡𝑢𝑝 and 𝐶𝑆𝑒𝑡𝑢𝑝 are substituted by
�̃�𝐿𝑀𝑎𝑥 and 𝐶𝐿𝑀𝑎𝑥 in Eq. (A.1) respectively. Moreover, if in any mo-
ment during  period 𝐶𝑆𝑒𝑡𝑢𝑝 = 𝐶𝐿𝑒𝑣𝑒𝑙 or �̃�𝑆𝑒𝑡𝑢𝑝 = �̃�𝐿𝑒𝑣𝑒𝑙 then variables
with 𝐶 or �̃� are dropped from Eq. (A.1) respectively. That is slightly
different to [36] as �̃� is also involved in computations. Such procedure
allow to prevent storage being overcharged from the grid. The excess
power from the PV array not required for the appliances consumption
is still allowed to be directed to the energy storage. Then the rate of
power intake is introduced as

𝜔 =
∫ 
𝑡 𝑃𝑃2𝐴(𝑡)𝑑𝑡

 − 𝑡
+ 𝐵𝑀𝑎𝑥 + 𝐶𝑀𝑎𝑥 + �̃�𝑀𝑎𝑥.

Knowing the rate of power intake and integral balance allows the
calculation of averaged minimum amount of time required for system
to be charged from the electrical grid, yielding

𝐼 > 0 ∧ 𝐼𝑛𝑡 = max

(

60𝐼
𝜔

,
𝐶𝑆𝑒𝑡𝑢𝑝 − 𝐶𝐿𝑒𝑣𝑒𝑙

𝐶𝑀𝑎𝑥
,
�̃�𝑆𝑒𝑡𝑢𝑝 − �̃�𝐿𝑒𝑣𝑒𝑙

�̃�𝑀𝑎𝑥

)

,

𝐼 ≤ 0 ∧ 𝐼𝑛𝑡 = 0.

Now the carbon intensity time series 𝑄 is sorted in monotonically
increasing order as 𝑄𝑠𝑜𝑟𝑡 allowing to define the main threshold as
𝛿 = 𝑄𝑠𝑜𝑟𝑡(𝐼𝑛𝑡). Here is the moment where the back coefficient is
added in order to avoid on demand charging of heating system as
𝛿 = 𝑄𝑠𝑜𝑟𝑡( + 𝑏 ∗ 60). That is done by simulating the system operation
and if in any moment on demand operation of either DHW Cylinder
or Thermal Storage is expected to be turn on, more energy is allowed

to be stored from the grid. This operation continues until no power on
demand is predicted to be directed from the grid to thermal storage
reservoirs. Calculation of 𝛿𝑎𝑢𝑥 is in agreement with [36], though the
time interval of operation is restricted to 24 h.
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