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Abstract

In this study we propose a simple, yet inherently fault-tolerant and robust controller utilizing a
combination of both feedforward and feedback control schemes. Feedback controllers are known to
be robust, but feedforward controllers can be reliable in the context of safety as they can be less
dependent on measurements. Though, many combined feedforward and feedback controllers have
been proposed in the literature, to the best of our knowledge a controller tolerant to the failure of
power feedback signal is nowhere demonstrated. In this scheme, major corrections are effected by a
model predictive forward control unit, while bounded uncertain part is corrected by a feedback control
unit. The feedforward control is implemented using the inverse equations of the nuclear reactor point
kinetics model. The bounded error control is effected by a simpler limited Proportional-Integral-
Derivative (PID) feedback controller. Stability analysis of the controller is carried out numerically
by Lyapunov’s direct method with the help of Particle Swarm Optimization (PSO) technique. The
proposed controller (referred to as Inverse Dynamics Corrected Control (IDCC)), is studied for reactor
power control with model error plus uncertainty and a principal feedback signal failure case ( i.e. power
sensor failure). It is shown that the IDCC has excellent load tracking performance for a challenging
demand profile with model error, in comparison to Sliding Mode Controller (SMC) and a manually
tuned PID controller. For the loss of principal feedback signal case, there is a trade off between the
tracking performance of IDCC and safety aspects. While both PID and SMC drive the reactor power
to unsafe levels, IDCC maintains the reactor power within a safer bound.

Highlights

• A conceptually new controller tolerant to failure of the principal feedback signal, has been designed
by combining feedforward and feedback control schemes.

• The controller’s stability is demonstrated by Lyapunov’s direct method with the particle swarm
optimization algorithm.

• The controller is shown to be fault tolerant, robust and have very good power tracking performance
by comparison with PID and sliding mode controllers.

• Many case studies have been performed to illustrate the performance of the controller.

Keywords

Fault tolerant control, particle swarm optimization, nonlinear stability analysis, feedforward control,
feedback control.
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1 Introduction

Nuclear energy is one of the most dependable and efficient sources of energy. It can play a significant role
in rapidly reducing the dependence on fossil fuels, to mitigate the climate crisis. At present nuclear power
plants (NPP) are employed to meet about 20% of the global electric power demand, which is expected
to grow in the coming decades [1, 2]. In this context, increasing number of reactors mean that reliability
and safety of the reactors need to be further strengthened to keep the number of unexpected events from
increasing and impacting public opinion. Therefore, the present generation of nuclear reactors are being
designed with enhanced safety, compared to previous generation reactors [3, 4]. The first line of defense in
depth in nuclear safety philosophy is to prevent abnormal operation and failures by inherently safe design
and use of high quality components. The second line of defense in depth envisages effective control and
protection systems. This requires the design of reactor control systems to be inherently stable, robust
and to have fault tolerant and fail safe features [5]. In this paper, we address the inherent fault tolerant
characteristics of nuclear reactor power control systems. Though the sensors and other components of
the control system are designed with state-of-the-art technology and industrial strength, highly reliable
hardware, verified and validated software, it is important to incorporate to the extent feasible, tolerance
to faults and even likely failures, inorder to ensure robustness of the safety design [6].

Fault tolerance implies continued functioning of the control system, possibly with degraded perfor-
mance under a single failure in either input, actuators, or components of the control system [7]. There
have been several studies in the literature to design fault tolerance using component redundancy, fault
detection and correction methods [8]. However, this approach would entail increased cost and complexity
of the control system and associated instrumentation. In this context, an approach that is simple and
uses inherently fault tolerant characteristics of well-known control schemes would be advantageous on
several counts. Less complexity would translate to better reliability of the control system, coupled with
less effort required for verification and validation excercises. Further regulatory approval of well-known
schemes would be easier to obtain compared to novel but complex methods.

The subject of this paper is to investigate a reactor power control scheme, that could withstand
critical failures when compared to conventional controllers. The most popular and simple feedback
controller often used is the Proportional-Integral-Derivative (PID) controller [9, 10] which adds the input
to the system by proportional, time integral, and time derivative of relative error of the output power to
demand power. PID can have disadvantages like poor control for nonlinear systems and not inherently
fault tolerant to component failures. A better performing controller, proposed in the literature for reactor
control [11] is the Sliding Mode Controller (SMC) and its variants, which are capable of handling plant’s
model error because of their inherent error tolerance behavior. A number of robust non-linear feedback
controllers have been developed by researchers to control reactor power such as Linear Quadratic Control
(LQR), Model Predictive Controller (MPC), Fuzzy logic PID controller, adaptive control, neural network-
based controllers, etc [12, 13, 14] to name a few.

Most of the above controllers make use of feedback effects to achieve error reduction but can overdrive
the system, in case of a failure in the measurement subsystem as happened in the Boeing 737 Max accident
[15]. Here, the immediate cause of the accident is a failure in the angle of attack sensor, causing the
control system to increase the pitch and eventual aircraft stall. In nuclear reactors, it is essential to ensure
that, at no point, the control system introduces a large amount of positive reactivity. If this is done by
limiting the control reactivity directly, the control system performance will be degraded. Therefore, in
the proposed scheme we combine the inherent error-correcting capability of feedback controllers with a
feedforward control. The feedforward control predicts the required reactivity input a priori from the
demand power. However, as the feedforward control cannot handle model error and uncertainties, a
limited feedback controller is added to control the deviations from model prediction. The feedforward
model is implemented by means of an inverse dynamics model, which outputs the net reactivity required
for a given power demand. For implementing this scheme in situations where the dynamics are not
invertible, the forward model can be used iteratively, as in model predictive control. In short, here the
first estimate of reactivity required for the reactor to achieve the desired power, is obtained from the
inverse point kinetics equation and only the limited correction required for tight control is obtained from
PID control.

There have been few good studies in the literature combining feedforward and feedback controllers
for the robust power tracking performance of NPPs [16, 17]. Though these controllers are very good
at handling model error and external disturbances, the power signal failure case, which is a plausible
scenario having an adverse effect on safety, is not studied. All the above control techniques, though,
can reject errors introduced into the system, they are not fault tolerant [18]. In an interesting design of
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a robust and resilient control system [19], a finite state machine is used to smoothly switch between a
robust controller for normal operation and an L-1 adaptive controller for resilient control under abnormal
conditions. The controller is studied for loss of coolant accident and loss of flow accident, but the power
signal failure case is not studied explicitly. And also the controller requires fault diagnosis and switching
systems, which increase the complexity of the system.

It is to be noted here that, in the proposed design any other linear feedback controller can be used
in place of the PID controller as handling nonlinearity and fault tolerance is achieved by the feedforward
part of the controller. The advantage of the present control system is that, it is easy to implement
and verify. The reactivity added by the PID is always limited, yet large corrections can come from the
feedforward model. This scheme ensures that the controller does not command large reactivity additions
because of any error or failure in the power measurement subsystem.

The structure of the paper is as follows. The proposed Inverse Dynamics Corrected by PID Control
(IDCC) strategy is explained in section 2. The stability analysis of the proposed controller is carried
out in section 3. The performance of the proposed controller is studied and reslts presented for cases of
challenging demand profiles with uncertainty and a component failure case, in section 4. The performance
of the IDCC is compared with SMC and an empirically tuned PID controller. Results and conclusions
are presented in section 5.

2 Inverse Dynamics Corrected Control (IDCC)

Conceptually the control approach adopted in the IDCC is as follows. For controlling a system along the
desired trajectory, it would be prudent to apply the known or a priori estimated control actions for any
large changes required in the system trajectories. Any tracking error, occurring due to uncertainties can
be corrected by feedback control, as it would be difficult to calculate such effects in advance. Accordingly,
the control method proposed has two major units, as shown in Figure (1). One is a feedforward unit
and another one is a feedback unit. In the feedforward unit, an inverse dynamics model is used to
estimate the reactivity to be added by control rods to achieve the required power. The Inverse Point
Kinetics Equation (IPKE) module generates the net reactivity ρ corresponding to the demand power
Pd (normalized). The reactivity feedback estimator module estimates the thermal reactivity feedback
ρf , using inputs of demand power Pd, coolant inlet temperature Tin and coolant mass flow rate Q. The
estimated ρf is subtracted from the net reactivity estimated by the IPKE module, to get the control rod
reactivity ρcr. Since it is not possible to correct any small deviations of the actual power, arising from
model error or uncertainty, by the feedforward control, a reactivity limited PID feedback unit is added
for the tight power control. In the feedback unit, the output power is measured by an observer (basically
a power sensor) and the deviation signal is given to the PID module. The PID output is constrained
by a limiter and the PID correction ρ̃pid is added to ρcr to arrive at the corrected control rod reactivity
ρ̃cr which is finally applied as control input to the plant. Because of the feedforward unit, the reactivity
added by the feedback PID controller unit can be limited to a value less than one β. This is expected to
keep the period of the transients reasonably long and magnitude manageable thereby, contributing to the
plant safety. In the proposed scheme, the dependence of the controller on measured values is minimized
as Tin, mass flow rate of the coolant and P are the only values measured. The controller is tolerant to
measurement errors of power and since Tin and Q are usually kept constant in sodium cooled reactors,
the measurement of these two parameters can be validated easily, making them fault tolerant.

2.1 Model of nuclear reactor power and primary system temperature

For this study, the dynamics of the nuclear reactor power is represented by a set of coupled first order
ordinary differential equations, called reactor point kinetics equations, wherein it is assumed that the
spatial flux shape is independent of time and time dependence of flux is represented by an amplitude
function. This model is valid for tightly coupled cores [20]. Even though there are many advanced model
of reactors like multi-point kinetics [21] and other nonlinear model [22], we have chosen very basic and
efficient model of the reactor to demonstrate the fault tolerant aspect of the proposed controller. In this
model, the change in reactor power and neutron precursor concentration can be represented as,

dP (t)

dt
=

(
ρ(t)− β

Λ

)
P (t) +

6∑
i=1

λiCi(t) + S (1)

dCi(t)

dt
=

βi

Λ
P (t)− λiCi(t) ; i = 1, 2, . . . , 6 (2)
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Figure 1: Block diagram for IDCC controller.

Where, P(t) is reactor power at time t, ρ(t) is the net reactivity at time t, Ci (t) is proportional to the
concentration of ith group delayed neutron precursors, βi is ith group delayed neutron fraction, λi is
decay constant of ith group delayed neutron precursors, β is the effective delayed neutron fraction, S is
proportional to the external neutron source strength, Λ is the mean generation time of neutrons.

The thermal hydraulics model consists of a lumped system, as shown in the Figure(2). It is represented
by a set of differential equations for fuel, cladding and coolant temperatures, as listed below.

dT1(t)

dt
= a1P (t)− b1T1(t) + b1T2(t) (3)

dT2(t)

dt
= a2T1(t)− (a2 + b2)T2(t) +

b2
2
T3(t) +

b2
2
Tin (4)

dT3

dt
= a3T2(t)−

(
b3 +

a3
2

)
T3(t) +

(
b3 −

a3
2

)
Tin (5)

where,

a1 =
1

mfCpf
; b1 =

hfwAfw

mfCpw
;

a2 =
hfwAfw

mwCpw
; b2 =

hwcAwc

mwCpw
;

a3 =
hwcAwc

mcCpc
; b3 =

u

mcCpcH
;

ai, bi are thermal coefficients involving heat capacity and heat transfer constants. mf ,mw,mc are mass
of fuel, clad and coolant respectively. Cpf , Cpw, Cpc are specific heat capacity of fuel, clad and coolant
respectively. Afw is area between fuel and clad. Awc is area between clad and coolant. T1, T2, T3 are the
fuel, clad and coolant outlet temperatures respectively. The schematic of a lumped thermal hydraulics
model of the reactor is shown in Figure (2) .

The average coolant temperature T̄3 is given by

T̄3 =
T3 + Tin

2
(6)
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Figure 2: Lumped thermal hydraulics model of the reactor

The time dependent net reactivity is given by

ρ(t) = ρcr(t) + ρf (t) (7)

Thermal feedback reactivity is given by

ρf (t) =
∑
i

αi∆Ti i = 1, 2, 3 (8)

∆Ti = Ti − T ref
i

where, Tin is the reactor coolant inlet temperatures, ρcr (t) is control rod reactivity at time t. T ref
1 , T ref

2 , T ref
3

are reference temperatures of fuel, cladding and core respectively, α1, α2, α3 are the feedback reactivity
coefficients of fuel, cladding and coolant respectively.

The values of the parameters corresponding to a typical medium sized Sodium-cooled Fast Reactor
(SFR) are listed below in Table (1).

Parameter Unit Value
λ1, λ2, λ3 s−1 0.0129, 0.0312, 0.1344,
λ4, λ5, λ6 0.3448, 1.3925, 3.753
β1, β2, β3, - 8.246× 10−5, 7.6817× 10−5, 6.6926× 10−5,
β4, β5, β6 1.2849× 10−5, 5.7615× 10−5, 1.7213× 10−5

β - 3.553× 10−3

Λ s 0.4× 10−6

a1
◦CJ−1 362.161

a2, a3, b1, b2, b3 s−1 0.5579, 3.2088, 0.2608, 3.107, 6.5
T1ref , T2ref , T3ref

◦C 1200, 700, 397
α1, α2, α3

◦C−1 −1.0× 10−5, −1.0× 10−5,−1.0× 10−5

S Ws−1 0

Table 1: Values of the parameters used in the study

2.2 Feedforward control module

For the control problem, a reference (demand) power is known and from that, the corresponding net
reactivity can be generated by means of the IPKE [23]. This equation relates the net reactivity to the
demand power, and can be derived by integrating equation (2) and substituting back into equation (1)
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as given below [24].

ρ(t) = β +
Λ

Pd(t)

dPd(t)

dt
− 1

Pd(t)

[
Pd(0)

6∑
i=1

βie
−λit

+

∫ t

0

6∑
i=1

λiβiPd(t
′)e−λ(t−t′)dt′

]
− Λ

Pd(t)
S

(9)

where ρ(t) is the net reactivity corresponding to the demand power Pd(t) in terms of relative power
at time t. Since the system has thermal feedback, it is required to estimate fuel, cladding and coolant
temperatures to predict the feedback reactivity and from that the reactivity to be added by the control
rods. This in turn requires the measured values of power and temperatures. Normally, in sodium cooled
fast reactors, apart from power, only coolant inlet Tin and outlet temperature T3 and coolant mass flow
rate Q are measured. Tin, Q and P are sufficient to estimate the fuel, cladding and coolant average
temperatures using the following set of equations. However, in the equations the measured power P is
replaced by demand power Pd and Ť1, Ť2, Ť3 are the estimated temperatures of fuel, cladding and coolant.

dŤ1

dt
= a1Pd (t)− b1Ť1 (t) + b1Ť2(t) (10)

dŤ2

dt
= a2

(
Ť1 (t)− Ť2 (t)

)
− b2

(
Ť2 (t)− Ť3 (t)

)
(11)

dŤ3

dt
= a3

(
Ť2 (t)− Ť3 (t)

)
− b3 (T3 (t)− Tin) (12)

The estimated temperature feedback reactivity is given by,

ρ̃f (t) =
∑
i

αi∆Ťi(t) i = 1, 2, 3 (13)

∆Ťi(t) = Ťi(t)− T ref
i

The approximate control rod reactivity estimate is given by,

ρcr (t) = ρ (t)− ρ̃f (t) (14)

This reactivity, if added by the control rods, would bring the reactor power very near the demand power,
but without corrections required from uncertainties. The feedback correction is discussed in the next
section.

2.3 Feedback control module

The implementation of PID controller to get the corrected control rod reactivity is as follows,

ρ̃cr (t) = ρcr (t) + ρ̃pid(t) (15)

where,
ρ̃pid(t) = L (ρpid (t)) (16)

And,

ρpid (t) = kpe (t) + kd
d

dt
e (t) + ki

∫ t

−∞
e(t′)dt′ (17)

e (t) = Pd (t)− P̃ (t) (18)

where, ρcr (t) is the approximate control rod reactivity at time t (estimated in the feedforward module),

Pd is demand power, P̃ (t) is the measured power, ρ̃cris corrected control rod reactivity, ρ̃pid is reactivity
correction from PID, e(t) is the error between the measured power and demand power at time t, kp, kd, ki
are PID parameters.

The reactivity correction through the PID is limited by a function,

L(x) = x; when−B ≤ x ≤ B else L(x) = sign (x)min(|x| , B) (19)

Typically, B is set at about β/10. The PID parameters were tuned manually and are as follows,

kp = 1.0× 10−4; kd = 1.0× 10−5; ki = 4.0× 10−4
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3 Stability analysis of IDCC

3.1 Lyapunov’s stability theorem

The nonlinear stability of IDCC is analysed by using Lyapunov direct method. According to the Lyapunov
stability theorem [25], for a given nonlinear autonomous dynamical system,

Ẋ = f(X) (20)

f (0) = 0

where, X is state vector and 0 is the equilibrium point of the system. If there exists a function V (X) :
Rn → R, which satisfying the following criteria,

V (X) > 0; X ∈ Rn − {0} (21)

V̇ (X) < 0; X ∈ Rn − {0} (22)

V (0) = V̇ (0) = 0; (23)

Then the system is asymptotically stable (eventually reaches equilibrium point after a perturbation) in
the given domain D ⊆ Rn. Where R is the set of real numbers and n is the number of state variables of
the dynamical system.

In simple words, the function must be positive definite for all values in the domain of the state vari-
ables, except at zero and time derivative of the function must be negative definite for all values in the
domain D of state variables except at zero. Such a function is called a Lyapunov function, and if such a
function exists, then the system is asymptotically stable with respect to that particular equilibrium point
in the given domain D.

The Lyapunov function candidate, to investigate the nonlinear stability of IDCC is

V =
1

2
e2 (24)

Where, e = Pd − P . Using error as Lyapunov function is the traditional approach for designing the
control algorithm of controllers like sliding mode control, adaptive control, etc,.
The time derivative of the Lyapunov function is give by,

V̇ = e.ė (25)

which is,
V̇ = (Pd − P )(Ṗd − Ṗ )

For the demonstration purpose, let us assume the demand power Pd= a constant.The time derivative of
the power Ṗ is given by equation (1).

dV

dt
= −(Pd.Ṗ + P.Ṗ ) (26)

If the equation (26) is negative definite in the domain D where n is number of state variables of the
dynamical system, then the system is asymptotically stable in that domain D.
The negative definite characteristics of equation (26) is investigated, by numerically finding the maxima
of the function. If the maxima of the function V̇ is negative definite, then we can assume that entire
function is negative for all values in the domain D. Now the problem becomes an optimization problem,
which can be solved by any one of the robust global optimizing algorithms since time derivative of V is
the function of 10 variables. The optimizer chosen to solve the problem is Particle Swarm Optimization
(PSO) because of its simplicity and global search optimization capability.

A program has been written in python, which incorporates PSO algorithm for finding maxima of
function V̇ .
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3.2 Particle Swarm Optimisation:

Particle swarm optimization is one of the famous and effective optimizer which is used for finding maxima
or minima of any cost function. The PSO algorithm for finding maxima of the time derivative of Lyapunov
function is shown in Figure (3).

Figure 3: Flow chart of PSO algorithm

The flowchart of the algorithm is explained as follows. For the simulation, N number of particles are
chosen. Each particle is allocated randomly over the domain D of the state space. The particles are
grouped in equal size over the state space into Ng groups. One of the particles from each group is chosen
as the best value Xgb (maxima) and global best Xb is chosen as best of {Xgb}. Each particle is moved
according to the instruction for the velocity function v [26].

Xi+1 = Xi + vi (27)

where,
vi = c1r1(X

i
gb −Xi) + c2r2(X

i
b −Xi) (28)

Where, Xi is the position vector of particles in ith iteration, Xi
gb is the corresponding group best position

and Xi
b is the corresponding global best position. c and r are acceleration coefficients, which take values

in the range [0,1]. c1 & c2 are fixed and r1 & r2 are varying randomly in each iteration. Once the velocity
function is applied, each particle is displaced towards group best and global best position, in a small step.
The displacement of the particles towards the maxima of the cost function due to the computed velocity
is depicted in Figure(4).
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Figure 4: Resultant displacement of particles based on the locations of global best and group best.

The particles are re-evaluated with the cost function (present case time derivative of Lyapunov func-
tion) and a new group best, a global best values are allotted. Convergence criteria [27] is that, the
distance between all particles to global maxima of that particular iteration must be less than er. If the
convergence criteria is not met, then the particles undergo displacement again by velocity function. In this
way the particles explore the state space and ultimately converges to the global best (real maxima of the
function). The parameters used in the PSO code is shown in Table 2. The domain for the optimization
is taken as 0 to 10000 states in P,Ci, Tj and Ťj where i={1,...,6} and j={1,2,3}. Since, the normalized
power and precursor concentrations are taken as state variables, all the above mentioned variables are lie
within the range of the chosen domain D.
The global maximum of the function for a particular demand power (Pd = 2) which is in terms of

Parameters Values
N 10000
Ng 100
D (0, 10000)

c1, c2 0.1, 0.3
er 0.001

Table 2: PSO parameters used in the simulation.

relative power, with respect to number of iterations is plotted in Figure (5 a). The result shows that the
maxima of the given cost function (equation (26)) is -0.0725.
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(a) Optimized result of PSO for a particular demand
power (Pd = 2). Time derivative of Lyapunov function
versus iteration steps

(b) Maximum value of time derivative of Lyapunov
function with respect to demand power (Pd)

Figure 5: Plots for finding maxima of time derivative of Lyapunov function through particle swarm
optimization

Similarly, the change in maxima of the time derivative of Lyapunov function with respect to change in
demand power is shown in Figure (5 b). Though we have studied a wider range of relative power (0-10)
is to demonstrate the robustness of controller’s stability and also for the cliff edge studies. As per the
plot, the function maxima remain negative. Hence we can conclude that V̇ is negative definite and the
considered nonlinear system (IDCC) is asymptotically stable in the domain D.

4 Simulation and discussion

For comparative evaluation of the performance of IDCC with a robust nonlinear controller, SMC has
been selected in addition to the standard PID controller. The following subsection presents an outline of
the SMC for reactor power control.

4.1 Sliding mode controller

Sliding mode control is one of the popular nonlinear controls (also referred as variable structure control),
which has inherent model error rejection and robust control characteristics. The SMC involves two steps
[28]. In the first step, a sliding manifold is defined using the equation,

s (t) =

(
d

dt
+ q

)r−1

e (t) = 0 (29)

Where, q is a positive constant, r is the relative degree which is the minimum order of Lie derivative of
output function of the dynamical system required for the control variable to appear explicitly, and e(t)
is the tracking error. In the second step a control law is designed, so as to drive the system towards the
sliding surface in finite time. This is done by defining the Lyapunov function V (x) = 1

2s
2 and requiring

that V̇ < −η|s| or equivalently, s ṡ < −η|s| and η is a strictly positive constant. A suitable function
for the control rod reactivity (control input) ρcr (t) is chosen to satisfy the Lyapunov condition. The
resulting form of the control law is given below in equation (30).

ρcr (t) = β − Λ

P (t)

6∑
i=1

βiCi (t) +
Λ

P (t)

dPd (t)

dt

− Λ

P (t)
η tanh

(
(P (t)− Pd (t))

ϕ

)
− ρf (t)

(30)

Where, the notations are the same as in the previous sections. η and ϕ are positive constants. The reader
is referred to [28] for details of the derivation of the control law.
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4.2 Case-1: Comparison of tracking performance with a challenging demand
profile

A challenging demand power profile is constructed as shown in the top section of Figure (6). The profile
amplitudes range from 0.01 to 3 times the normalized power. The duration of the profile lasts for 50
seconds. The tracking performance of IDCC is compared with both SMC and PID. In the present case,
the system has no model error and uncertainty. In the later sections model error and uncertainty are
added.

The comparison of IDCC with PID is shown in the bottom section of Figure (6) for the power profile
mentioned above. The simulation results show that the maximum error of SMC is about 75% at points
where there is sharp change in power. Whereas IDCC is able to control and track the power profile very
well with less than 1% deviation.

Figure 6: Performance comparison of IDCC with SMC. The plot shows the better control performance of
IDCC compared with SMC to track the low power demand because of the low amplitude in the feedback
signal.

The performance comparison of IDCC and manually tuned PID for the same power profile is shown
in Figure (7). The simulated plots show that, PID has a maximum error of about 80% and moderate
control ability in many fast varying sections of the demand power profile. Whereas the IDCC shows
excellent performance with less than 1% deviation as discussed before.
The SMC and PID were unable to reach the low demand power in the order of 10−2 of Pd and having
maximum error up to 80% because of the low amplitude in the feedback signal for low power cases whereas
IDCC priory calculated the input required for any demand power with the help of feedforward unit, it
able to control the power in high precision.

4.3 Case-2: Comparison of tracking performance with bounded uncertainty

In order to test the robustness of the IDCC in the presence of model error and bounded uncertainty, 10%
error is added to the reactor parameter β and a noise signal of amplitude 0.5% of nominal power and
frequency 2π Hz is added to the dynamics. Though feedforward controllers are inherently not able to
handle the model discrepancies, since IDCC combines feedforward control with feedback control, it can
easily handle model uncertainties.

The comparison of IDCC and SMC performance is shown in Figure (8). As per the simulation,
the performance of SMC is slightly better than IDCC, because of its insensitivity to external noise and
unmodeled dynamics. But the tracking performance of IDCC is not far off, which has a maximum error
of about 2% and is still in the acceptable domain. The IDCC performance is also compared with a PID
controller which is shown in the Figure (9). The maximum error when using PID controller is 4.5% but
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Figure 7: Performance comparison of IDCC with PID. The plot shows the better control performance of
IDCC compared with PID to track the low power demand because of the low amplitude in the feedback
signal.

Figure 8: Performance of IDCC and SMC with model uncertainty. The Plot shows the inherent error
tolerance behavior of SMC and the limited error handling ability of IDCC.
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Figure 9: Performance of IDCC and PID with model uncertainty and noise. The PID can dampen the
sinusoidal error introduced but it cannot anticipate the sudden change in demand, whereas IDCC has a
limited ability to handle model uncertainties and large errors.

the maximum error with IDCC is only 2%. Since PID cannot anticipate sudden changes in demand,
so there is more error whenever the demand profile changes. But PID can damp the sinusoidal noise
introduced, whereas the IDCC has only a limited ability to suppress noise. Hence the performance of
IDCC is better than the PID controller in the presence of model error and noise. The reactivity added
by the feedforward module and the reactivity introduced by the PID controller of the IDCC is shown in
the Figure (10). The responsibility of adding large reactivity gets delegated to the feedforward module,
as indicated in the top graph of Figure (10). The reactivity corrections ρpid effected by the PID part of
the IDCC, as shown in the lower graph remains less than about 30× 10−5, which is much less than the
β (350× 10−5).

Figure 10: Reactivity plot of feedforward and feedback module of IDCC with model uncertainty and
noise
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4.4 Case-4: Fault tolerance

For this case, it is assumed in the simulation that, the power measurement signal is completely lost
at time t = 30 seconds. The measured power signal can fail in at least three most likely modes, viz.,
failed indicating zero (stuck at zero), failed indicating maximum power (stuck at high) or stuck at some
intermediate value when the reactor is operating at a nominal power. These failures can happen due
to open or short circuit conditions, anywhere from the neutron detector to processing electronics, even
in the presence of redundant configurations. Of these modes, the stuck at zero case is studied here, as
this failure mode has the potential for driving the controlled power, to high unsafe values. This case is
simulated with IDCC and compared with SMC and PID controllers, the results for which are shown in
Figure (11). Though the IDCC is not able to track the demand power accurately, the deviation from the
demand is within tolerable limit, but in the case of SMC and PID, the controllers drive the output power
to unsafe levels. PID and SMC are not fault tolerant simply because these controllers are working with
feedback signals. When the feedback signal is lost, these controllers can no longer control the system.
As the error signal can diverge, leading to the divergence of output power. Though the performance
level of IDCC with respect to robustness is not on par with SMC, it is clear from Figure (11) that it is
has inherent fault tolerant capability with respect to the main tracked variable. It is to be noted that
comparatively lesser robustness of IDCC is acceptable given its fault tolerance capability, which is more
important in safety critical applications like nuclear reactor power control.

Figure 11: Performance of IDCC, SMC, and PID on power measurement failure. It is assumed that at
30th second, the fault in the feedback signal has occurred.

5 Conclusion

A simple but fault tolerant and robust controller is designed, combining feedforward and feedback control
schemes. Inverse dynamics is used to implement the feedforward part of the control to effect major
corrections, while PID control is used for the reactivity limited feedback control to take care of uncertainty.
The nonlinear stability analysis of proposed controller is examined using Lyapunov’s direct method and
the negative definiteness of time derivative of Lyapunov function is demonstrated with the help of particle
swarm optimization technique. The performance of the combined IDCC is studied in comparison with
a manually tuned PID controller and SMC. From the study, it is established that for controlling various
challenging test power trajectories with model error and noise, the IDCC performs better than PID and is
comparable to SMC. However, with respect to fault tolerance, it is demonstrated by a case study that the
IDCC is tolerant to faults in the power measurement, though the robustness is marginally less compared
to SMC. The limitations of the IDCC are the incapability to handle the unmodelled dynamics and system
noise. Though it is fail-safe, it has a more complex algorithm compared to other controllers like SMC
and PID. Further studies are in progress to establish the stability characteristics of proposed controller
analytically and methods which incorporate fault tolerance in other measured variables, actuators are
also being investigated.
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Nomenclature

IDCC - Inverse Dynamics Corrected Control
NPP - Nuclear Power Plant
PID - Proportional Integral Derivative
SMC - Sliding Mode Control
SFR - Sodium-cooled Fast Reactor
LQR - Linear Quadratic Regulator
MPC - Model Predictive Control
IPKE - Inverse Point Kinetics Equation
PSO - Particle Swarm Optimization
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