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Abstract

In sophisticated and complex system such as nuclear power plant, fault esti-

mation and fault tolerant control always play an important role in maintaining

the system stability and assuring satisfactory and safe operation. Thus, in this

work a fault estimation and fault tolerant control scheme based on sliding mode

theory is proposed for a pressurized water reactor type nuclear power plant con-

sidering simultaneous actuator and sensor faults. First, using descriptor sliding

mode observer approach, an accurate estimation of the system states and sensor

fault vector have been obtained simultaneously. Then, based on the estimated

information, an integral type sliding mode control scheme is proposed to sta-

bilize the resulting faulty system. With the help of Lyapunov stability theory,

reachabilities of the proposed sliding mode surfaces are shown in both the state

estimation space and the error estimation space, simultaneously. Finally, the

efficacy of the proposed control scheme is shown by applying it to a nuclear

power plant.
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1. Introduction

A facility designed to convert nuclear energy into electricity is called a Nu-

clear Power Plant (NPP). An NPP is a complex nonlinear system, where system

parameters vary with fuel burn-up, internal reactivity feedbacks, and with the

change in the power levels and operating conditions. These variations in system5

parameters along with other system uncertainties such as unmodeled dynamics

and external disturbances, make NPP control a very difficult task. Thus, a

simple and high precision control strategy, which guarantees satisfactory per-

formance in the presence of these uncertainties, is always preferable for an NPP.

In the past decades, different types of robust and adaptive control strate-10

gies have been proposed for NPPs to achieve the desired dynamic performance.

Among different robust and adaptive control design techniques, Sliding Mode

Control (SMC) technique has been extensively studied and widely applied to

the control of NPPs [1, 2, 3, 4, 5, 6] because of its inherent robustness against

matched uncertainties, simple structure, ease of implementation, and capability15

to effectively control both linear as well as nonlinear systems [7]. Vajpayee et al.

[1] designed a robust subspace predictive control for a Pressurized Water Re-

actor (PWR) by combing a subspace-based predictive control with an integral

SMC. Desai et al. [2] and Patre et al. [3] proposed an integral SMC and a fuzzy

SMC for spatial power control of advanced heavy water reactor, respectively.20

In [4], a fractional-order SMC has been proposed for output power control of

a research reactor based on non-linear reduced-order fractional-order model. A

hybrid optimal controller combining linear quadratic Gaussian/loop transfer re-

covery and integral SMC for a PWR operating in the load-following mode has

been proposed in [5]. Mostafavi and Ansarifar [6] proposed an observer-based25

dynamic SMC using Lyapunov-approach for level control of pressurizer in PWR

type NPP.

Almost all the above mentioned approaches have been developed under the

2



assumption that there is no presence of faults in the actuators and/or sensors.

However, during normal operation of NPPs, various malfunctions and imperfect30

behaviour are inevitable, which resulted from the unexpected variations in ex-

ternal surroundings and sudden change in signals. Such kinds of phenomenons

are categorized as faults. Faults are further classified as actuator faults, process

or plant faults, and sensor faults depending on their location. In sophisticated

and complex systems such as NPP, faults may lead to loss of effectiveness or35

sometimes total failure of the overall plant, which may further lead to catas-

trophic events, thereby causing both economic losses as well as human casualties.

Thus, in order to improve safety and reliability of NPPs and to reduce economic

losses, it is necessary to design the control system which is capable of tolerating

potential faults while maintaining acceptable performance. Such type of control40

system is known as fault-tolerant control (FTC) system. Over the past few

decades, due to increasing demand for higher safety and reliability standards

in the NPPs, the development of Fault Estimation (FE) and FTC systems has

received considerable attention. In general, FTC schemes involve two steps:

first step is the fault diagnosis that is, detection, estimation, or reconstruction45

of faults [8, 9, 10, 11, 12] and second step is the controller design based on the

fault information to eliminate the effects of faults or attenuate them within an

acceptable limit [13, 14, 15, 16, 17].

Over the past few decades, various fault detection/estimation and FTC tech-

niques have been developed for NPPs. For the safe and stable operation of50

NPPs, actuators as driving elements and sensors as information transmission

elements play an important role. Thus, accommodation of actuator and sen-

sor faults have received considerable attention among the researchers. In [18],

authors proposed the use of Sliding Mode Observer (SMO) for robust fault de-

tection and isolation in nuclear reactor system as well as in steam generator and55

pressurizer system in the presence of uncertainties and noise. Dong [19] pro-

posed a boolean network model in a linear representation for describing the fault

propagation among sensors for a nuclear steam supply system based on a mod-

ular high temperature gas-cooled reactor. Gautam et al. [9] proposed a robust
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fault detection algorithm using extended Kalman filter and Kullback-Leibler di-60

vergence for non-linear PWR-NPP subject to parametric additive time-varying

incipient fault in the measurements. Authors consider the problem of both sin-

gle and simultaneous multiple sensors incipient fault detection and isolation. In

[20], recurrent neuro-fuzzy systems is adopted, in which a fuzzification module

is linked to a neural network interface module, for fault detection and isolation65

in PWR. In [21], authors proposed an FTC system in the presence of actuator

failures using fault detection and isolation approach while keeping the system

reachable or controllable. Hatami et al. [13, 14] proposed adaptive neuro-fuzzy

FTCs based on emotional learning for load following mode of operation in NPP.

Authors used extended Kalman filter and recursive least square method to es-70

timate the parameters of the system. In [11] and [12], authors proposed a

multi-scale Principal Component Analysis (PCA) by integrating wavelet with

PCA and a hybrid multi-scale data reconciliation scheme by combining data

reconciliation with the wavelet transform, respectively for detection and isola-

tion of sensor and process faults in advanced heavy water reactor. Yu et al. [22]75

proposed a corrected reconstruction algorithm to improve the accuracy of con-

ventional PCA techniques while reconstructing multi-sensor faults and a cyclic

PCA monitoring model to detect multi-sensor failures. Khentout et al. [15]

presented fault monitoring and accommodation of the heat exchanger param-

eters of Triga-Mark II nuclear research reactor using model based analytical80

redundancy. Wang et al. [17] proposed a fuzzy fault accommodation method

for a small pressurized water reactor under control rod driven mechanism struck

faults and feed water valve stuck faults. In [16], authors proposed an FTC for

a nuclear steam generator in the presence of sensor biases. The bias present

in the measurements is modeled as a time varying parameter and estimated85

using a suitably modified version of RNK based state and parameter estimator

approach and then the controller is designed based on the corrected measure-

ments. Almost all the above fault detection/estimation and FTC schemes have

either focused only on sensor faults or only on actuator faults or based on the

assumption that only either an actuator or a sensor fault present at a given in-90
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stant of time. However, the simultaneous consideration of actuator and sensor

faults has yet to be investigated.

Motivated by the aforementioned problems, in this paper, an observer-based

FTC scheme is designed for PWR-NPP considering simultaneous actuator and

sensor faults. To design the proposed control scheme, the original system is95

augmented into a descriptor system, in which system states and sensor faults

form a new state vector of the augmented system. First, the SMO is designed

for the augmented system to estimate system states and sensor faults simul-

taneously. The proposed observer is insensitive towards parameter variations

and external disturbances, has high accuracy, and gives finite time convergence100

compared to conventional observers. With the help of Linear Matrix Inequali-

ties (LMIs), a sufficient condition is given to ensure asymptotic stability of the

overall closed-loop system consisting of both state observer and estimation error

system. Then, based on the estimated information, an integral SMC based FTC

scheme is designed to stabilize the closed-loop faulty system. With the help of105

Lyapunov stability theory, it is shown that the proposed control law guaran-

tees that the trajectories of the closed-loop system in both error estimation and

state estimation spaces can be kept onto the corresponding switching surfaces.

Finally, the effectiveness of the proposed control scheme is shown with the help

of simulation results by applying it to a PWR-NPP. The major contributions110

of the proposed work are summarized as follows:

� The overall problem of active FTC is considered i.e., detection of faults

as well as elimination/attenuation of faults.

� The proposed control scheme considers the effect of simultaneous actuator

and sensor faults.115

� A sufficient condition is derived using LMIs to ensure overall stability of

the closed-loop system.

The rest of the paper is organized as follows: Section 2 formulates the control

problem. Section 3 explains the design procedure of the proposed fault tolerant
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control scheme. Application of the proposed control scheme to PWR-NPP is120

presented in Section 4. Finally, conclusions are drawn in Section 5 indicating

main contributions.

2. Problem Formulation

Let us consider an uncertain linear continuous-time system represented as

ẋ(t) = Ax(t) +B(u(t) + fa(t)) (1a)

y(t) = Cx(t) + fs(t) (1b)

where x(t) ∈ Rn is the system state vector, u(t) ∈ Rm is the control input125

vector, y(t) ∈ Rp is the output measurement vector, fa(t) ∈ Rm represents

the actuator fault vector, and fs(t) ∈ Rp represents the sensor fault vector.

A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n are the system matrices.

For system (1) following assumptions are made:

Assumption 1. The actuator fault fa(t) and the sensor fault fs(t) are un-

known but bounded and satisfy the following conditions:

∥fa(t)∥ ≤ f∗
a and ∥fs(t)∥ ≤ f∗

s (2)

where f∗
a and f∗

s are known positive constants.130

Assumption 2. Matrix pair (A,B) is controllable and matrix B has full col-

umn rank.

Assumption 3. Matrix pair (A,C) is observable and matrix C has full row

rank.

For system (1), control aim is to develop an effective FE and FTC strategy such135

that the asymptotic estimation of the state vector and sensor fault vector can

be obtained simultaneously, and to guarantee the resulting closed-loop system

to be stable in the presence of actuator and sensor faults.
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3. Proposed Approach

In order to obtain the accurate estimation of system states and sensor faults,140

the system (1) is augmented as

Eaẋa(t) = Aaxa(t) +Bau(t) +Haf(t) (3a)

y(t) = Caxa(t) (3b)

where

xa(t) =

 x(t)

fs(t)

 , f(t) =

 fa(t)

fs(t)

 ,

Aa =

 A 0n×p

0p×n −Ip

 , Ba =

 B

0p×m

 , Ca =
[
C Ip

]
,

Ha =

 B 0n×p

0p×m Ip

 , Ea =

 In 0n×p

0p×n 0p×p

 .

System (3) is a descriptor system model where the state vector x(t) and sensor

fault vector fs(t) are considered as a descriptor system state vector xa(t). The

superiority of this transformation is that if an effective state observer is designed

for the descriptor system (3), then the original states and sensor faults could145

be estimated simultaneously. In this work, to obtain the estimates of descriptor

state vector, a SMO is proposed.

Remark1. In (1), it is assumed that the actuator fault vector fa(t) satisfies

the matching condition (space span by the input distribution matrix). Thus,

its effect can be easily overcome by the SMC as the SMC is insensitive towards150

matched type of faults. Therefore, in this work, in descriptor system model (3)

only the sensor fault vector is augmented with the state vector.

Remark2. The effect of mismatched types of actuator faults can be minimized

by estimating its value and then by designing a feedforward control based on

the estimated information. To estimate mismatched actuator fault vector, the155

state vector of the descriptor system model (3) needs to be augmented with

mismatched actuator fault vector along with the the system state and sensor

faults vector.
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3.1. Sliding Mode Observer Design

This section focuses on the design of SMO to obtain the estimates of the sys-160

tem state vector and sensor fault vector, simultaneously. The following lemma

is significant and crucial for the subsequent development of the observer design.

Lemma 1. [23] There always exist a matrix LD ∈ R(n+p)×p such that the ma-

trix S = (Ea+LDCa) is nonsingular. Furthermore, it holds that CaS
−1LD = Ip165

and AaS
−1LD = −R, where R =

[
0p×n Ip

]⊤
.

The proof of Lemma 1 is given in Appendix A.

Based on the above lemma, the SMO for descriptor system (3) is designed

as [23]

Sż(t) = (Aa − LpCa)z(t) +Bau(t)−Ry(t) + Lsus(t) (4a)

x̂a(t) = z(t) + S−1LDy(t), (4b)

where z(t) =
[
zx(t)

⊤ zfs(t)
⊤]⊤ is the intermediate state variable, x̂a(t) =170 [

x̂(t)⊤ f̂s(t)
⊤
]⊤

is the estimation of xa(t), and us(t) is the discontinuous injec-

tion added to eliminate the effect of disturbance. Lp and Ls are the proportional

and discontinuous observer gains and are designed to satisfy Lp = SP−1C⊤
a and

Ls = SP−1C⊤
a U⊤ = Ha, respectively, where P ∈ R(n+p)×(n+p) > 0 and U ∈

R(m+p)×p are the matrices to be designed. Let matrix LD is defined as LD =175 [
0p×n W

]⊤
, where W ∈ Rp×p and is selected as W = diag(w1, w2, . . . , wp)

with wi > 0.

In the following, the error system dynamics are derived from the augmented
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system (3) and the observer (4). From (4), we have

S ˙̂xa(t) = Sż(t) + LDẏ(t)

= (Aa − LpCa)z(t) +Bau(t)−Ry(t)

+Lsus(t) + LDẏ(t)

= (Aa − LpCa)(x̂a(t)− S−1LDy(t)) +Bau(t)

−Ry(t) + Lsus(t) + LDẏ(t)

= (Aa − LpCa)x̂a(t)−AaS
−1LDy(t)

+LpCaS
−1LDy(t) +Bau(t)

−Ry(t) + Lsus(t) + LDẏ(t). (5)

Using Lemma 1, (5) can be simplified to180

S ˙̂xa(t) = (Aa − LpCa)x̂a(t) +Ry(t) + Lpy(t)

+Bau(t)−Ry(t) + Lsus(t) + LDẏ(t)

= (Aa − LpCa)x̂a(t) + Lpy(t)

+Bau(t) + Lsus(t) + LDẏ(t). (6)

On the other hand, adding LDẏ(t) to the both side of system (3a), we get

Sẋa(t) = Aaxa(t) +Bau(t) +Haf(t) + LDẏ(t)

= (Aa − LpCa)xa(t) +Bau(t) +Haf(t)

+Lpy(t) + LDẏ(t). (7)

Now, defining the estimation error as e(t) = x̂a(t)− xa(t), the estimation error

dynamics is obtained as

ė(t) = S−1
[
(Aa − LpCa)e(t) + Lsus(t)−Haf(t)

]
. (8)

The state variable of observer dynamics (6) is the augmented vector i.e.,

x̂a(t) =
[
x̂(t)⊤ f̂s(t)

⊤
]⊤

which does not facilitate the stability analysis of the185

system (6). Therefore, in the following, the observer dynamics (6) has been de-

composed into an estimated state vector dynamics ˙̂x(t). The observer dynamics
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(6) can be rewritten as

Ea
˙̂xa(t) + LDCa

˙̂xa(t) = (Aa − LpCa)x̂a(t) + Lpy(t)

+Bau(t) + Lsus(t) + LDẏ(t) (9)

or

Ea
˙̂xa(t) = Aax̂a(t)− LpCae(t) +Bau(t)

+Lsus(t)− LDCaė(t). (10)

Recalling x̂a(t) =
[
x̂(t)⊤ f̂s(t)

⊤
]⊤

∈ R(n+p) and Ls = Ha, and decomposing

matrices LD =
[
L⊤
D1

L⊤
D2

]⊤ ∈ R(n+p)×p, Lp =
[
L⊤
p1

L⊤
p2

]⊤ ∈ R(n+p)×p, Ls =[
L⊤
s1 L⊤

s2

]⊤ ∈ R(n+p)×(m+p), and us(t) =
[
us1(t)

⊤ us2(t)
⊤]⊤ ∈ R(m+p), (10)

can be decomposed as

˙̂x(t) = Ax̂(t)− Lp1
Cae(t) +Bu(t) + Ls1us1(t)− LD1

Caė(t). (11)

It is easy to verify that Ls1 = [B 0n×p] ∈ Rn×(m+p), LD1
= 0n×p ∈ Rn×p, and

LD2 = W ∈ Rp×p. Thus, (11) is reduces to

˙̂x(t) = Ax̂(t)− Lp1Cae(t) +Bu(t) +Bus1(t). (12)

3.2. Observer Based Sliding Mode Control Design190

In this section, the discontinuous observer input us(t) and the control input

u(t) have been designed to stabilize the systems (8) and (12). As the system is

affected by actuator as well as sensor faults, in this work, both the inputs are

designed using robust sliding mode theory.

First, the discontinuous observer input us(t) is designed. For the design of

us(t), the switching surface is defined in term of estimation error e(t) as

σe(t) = H⊤
a S−⊤Pe(t), (13)

where σe(t) ∈ Rm+p, and the designed Lyapunov matrix P > 0 is to be con-

structed such that it satisfies the following constraint

H⊤
a S−⊤P = UCa, (14)
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where U ∈ R(m+p)×p is the parameter matrix to be determined.195

Note that, in (13), e(t) is unknown and thus, σe(t) is unavailable. However,

output error variable ey(t) = Cae(t) = Cax̂a(t)−Caxa(t) is available since, both

Cax̂a(t) and Caxa(t) are known. Therefore, by introducing constraint (14), the

switching surface

σe(t) = H⊤
a S−⊤Pe(t) = UCae(t) (15)

is available for the controller design. The discontinuous observer input us(t) is

designed as

us(t) = −µo sign(σe(t)), (16)

where µo ≥ (f∗
a + f∗

s + η) is the discontinuous gain and sign(.) is the standard

signum function. η > 0 is the parameter to be designed.

Second, the control input u(t) is designed as consisting of two parts, a con-

tinuous part, and a discontinuous part, and it is constructed using the estimated

state vector x̂(t) as

u(t) = −Kxx̂(t)−Krr(t)︸ ︷︷ ︸
uc(t)

−µc1σx̂(t)− µc2sign(σx̂(t))︸ ︷︷ ︸
ud(t)

, (17)

where uc(t) is the continuous nominal control, ud(t) is the discontinuous control,

Kx is the state feedback control gain responsible for the performance of the

nominal system which can be designed by any state feedback control design200

technique, Kr is the feed-forward control gain introduced to track the desired

reference signal r(t), and µc1 > 0 and µc2 > 0 are the discontinuous control

gains which are designed using exponential reaching law. In (17), the switching

surface σx̂(t) is designed as

σx̂(t) = G

[
x̂(t)− x̂(0)−

∫ t

0

(
Ax̂(τ)−BKxx̂(τ)

−BKrr(τ)
)
dτ

]
, (18)

where G ∈ Rm×n is the projection matrix. Here, G is selected as left pseudo-205

inverse of input distribution matrix i.e., G = (B⊤B)−1B⊤ such that GB is

invertible. The term −Gx̂(0) ensures that σx̂(0) = 0, thereby eliminating the

reaching phase.
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The control action required to maintain the sliding motion is known as equiv-

alent control, and it is obtained by setting σ̇x̂(t) = 0. Using (18) and (12), the

equivalent control is computed as

ueq(t) = −Kxx̂(t)−Krr(t)− us1(t) + (GB)−1GLp1Cae(t). (19)

Now, substituting (19) in (12), the sliding mode dynamics in the state estimation

space is given by210

˙̂x(t) = (A−BKx)x̂(t)−BKrr(t)

+
[
B(GB)−1G− I

]
Lp1Cae(t). (20)

As a result, the sliding mode dynamics (20) and the error dynamics (8) form

the overall closed loop system as

˙̂x(t) = (A−BKx)x̂(t)−BKrr(t)

+
[
B(GB)−1G− I

]
Lp1Cae(t), (21a)

ė(t) = S−1
[
(Aa − LpCa)e(t) + Lsus(t)−Haf(t)

]
. (21b)

3.3. Stability Analysis of Closed-Loop System

In this section, sufficient conditions for asymptotic stability of the closed-

loop system (21) have been derived.215

Theorem 1. If there exist positive definite matrices Q ∈ Rn×n and P ∈ R(n+p)×(n+p),

and U ∈ R(m+p)×p such that the following symmetric matrix constraints

Γ =


Γ11 Γ12 Γ13

⋆ Γ22 Γ23

⋆ ⋆ Γ33

 < 0, (22)

and

H⊤
a S−⊤P − UCa = 0, (23)
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hold, where

Γ11 = Q(A−BKx) + (A−BKx)
⊤Q,

Γ12 = Q
[
B(GB)−1G− I

]
Lp1Ca,

Γ13 = −QBKr,

Γ22 = PS−1(Aa − LpCa) + (Aa − LpCa)
⊤S−TP,

Γ23 = 0,

Γ33 = 0,

then, under the sliding mode observer input us(t) defined in (18), the overall

closed-loop system (21) is asymptotically stable.

Proof. Consider the Lyapunov function

V (t) = Vx̂(t) + Ve(t) (24)

where

Vx̂(t) = x̂(t)⊤Qx̂(t),

Ve(t) = e(t)⊤Pe(t).

Taking the weak infinitesimal operator (L) along the trajectories of system (21),220

we get

LVx̂(t) = 2x̂(t)⊤Q
{
(A−BKx)x̂(t)−BKrr(t)

+
[
B(GB)−1G− I

]
Lp1

Cae(t)
}

= x̂(t)⊤
[
Q(A−BKx) + (A−BKx)

⊤Q
]
x̂(t)

+2x̂(t)⊤Q
[
B(GB)−1G− I

]
Lp1

Cae(t)

−2x̂(t)⊤QBKrr(t), (25)
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and

LVe(t) = 2e(t)⊤PS−1
[
(Aa − LpCa)e(t)

+Lsus(t)−Haf(t)
]

= e(t)⊤
[
PS−1(Aa − LpCa)

+(Aa − LpCa)
⊤S−⊤P

]
e(t)

+2e(t)⊤PS−1
[
Lsus(t)−Haf(t)

]
. (26)

Recalling that Ls = SP−1C⊤
a U⊤ = Ha and HaS

−⊤P = UCa, the second term

of (26) becomes

2e(t)⊤PS−1
[
Lsus(t)−Haf(t)

]
= 2e(t)⊤PS−1Haus(t)− 2e(t)⊤PS−1Haf(t)

= 2e(t)⊤C⊤
a U⊤us(t)− 2e(t)⊤C⊤

a U⊤f(t)

= 2σe(t)
⊤us(t)− 2σe(t)

⊤f(t)

= −2µoσe(t)
⊤sign(σe(t))− 2σe(t)

⊤f(t)

≤ −2µo∥σe(t)∥+ 2∥σe(t)∥∥f(t)∥

≤ −2
(
µo − (f∗

a + f∗
s )
)
∥σe(t)∥. (27)

Now, if we select µo ≥ (f∗
a + f∗

s + η), where η > 0, then (27) becomes

2e(t)⊤PS−1
[
Lsus(t)−Haf(t)

]
≤ −2η∥σe(t)∥. (28)
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Thus, from (24), (25) and (28), we have225

LV (t) = LVx̂(t) + LVe(t)

≤ x̂(t)⊤
[
Q(A−BKx) + (A−BKx)

⊤Q
]
x̂(t)

+2x̂(t)⊤Q
[
B(GB)−1G− I

]
Lp1Cae(t)

−2x̂(t)⊤QBKrr(t)

+e(t)⊤
[
PS−1(Aa − LpCa)

+(Aa − LpCa)
⊤S−⊤P

]
e(t)− 2η∥σe(t)∥

≤
[
x̂(t)⊤ e(t)⊤ r(t)⊤

]
Γ
[
x̂(t)⊤ e(t)⊤ r(t)⊤

]⊤
.

(29)

Thus, it is evident from (29) that if the matrix constraint Γ < 0, then LV (t) ≤ 0,

which means that the overall closed-loop system (21) is asymptotically stable.

This completes the proof.

The condition proposed in Theorem 1 includes a linear matrix equality, which

is difficult to solve directly by MATLAB toolbox. To overcome this difficulty

the following algorithm is employed. The linear matrix equality (23) can be

equivalently rewritten as

trace
[ (

H⊤
a S−⊤P − UCa

)⊤ (
H⊤

a S−⊤P − UCa

) ]
= 0. (30)

Let us introduce the following condition [23, 24](
H⊤

a S−⊤P − UCa

)⊤ (
H⊤

a S−⊤P − UCa

)
< ϵIn+p, (31)

where ϵ > 0 is the parameter involved with the optimization problem. By Schur

compliment (31) can be written as−ϵIn+p

(
H⊤

a S−⊤P − UCa

)⊤
⋆ −Im+p

 < 0. (32)

Hence, the problem of solving the matrix condition (22) and (23) is converted

into a problem of finding a global solution of the minimization of ϵ subject to230

inequalities (22) and (32). This problem is a minimization problem and can be

solved by using the solvers mincx in the LMI toolbox of MATLAB.
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3.4. Reachability Condition of Switching Surface

This section proves the guaranteed reachability condition of both the sliding

surfaces σe(t) defined in (15) and σx̂(t) defined in (18) in both error estimation235

and state estimation spaces in the following theorem.

Theorem 2. For the observer gains LP , LD, and Ls designed in previous sec-

tions, and the matrices P , Q, and U are designed by satisfying the matrix con-

straints (22) and (32), with the discontinuous observer input us(t) defined in

(16) and discontinuous control input u(t) defined in (17), the trajectories of the240

closed-loop system (21) in both error estimation and state estimation spaces can

be kept onto the corresponding switching surfaces σe(t) and σx̂(t), respectively.

Proof. Choosing the Lyapunov function Vs(t) as

Vs(t) = Vsx̂(t) + Vse(t), (33)

where

Vsx̂(t) =
1

2
σx̂(t)

⊤σx̂(t), (34)

and

Vse(t) =
1

2
σe(t)

⊤ (
H⊤

a S−⊤PS−1Ha

)−1
σe(t). (35)

Note that, the
(
H⊤

a S−⊤PS−1Ha

)−1
is positive definite as Ha has full column

rank. Differentiating (15) along the trajectories of (21b), we get

σ̇e(t) = H⊤
a S−⊤PS−1

[
(Aa − LpCa)e(t)

+Lsus(t)−Haf(t)
]
. (36)

Again, differentiating (35) we get245

V̇se(t) = σe(t)
⊤ (

H⊤
a S−⊤PS−1Ha

)−1
σ̇e(t)

= σe(t)
⊤ (

H⊤
a S−⊤PS−1Ha

)−1
H⊤

a S−⊤PS−1

×
[
(Aa − LpCa)e(t) + Lsus(t)−Haf(t)

]
. (37)
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Now, using the expression derived in Theorem 1, the last two terms of (37) can

be written as

σe(t)
⊤ (

H⊤
a S−⊤PS−1Ha

)−1
H⊤

a S−⊤PS−1

×
[
Lsus(t)−Haf(t)

]
= σe(t)

⊤(us(t)− f(t)
)

≤ −η∥σe(t)∥. (38)

Thus, (37) becomes

V̇se(t) = σe(t)
⊤ (

H⊤
a S−⊤PS−1Ha

)−1
H⊤

a S−⊤PS−1

×(Aa − LpCa)e(t)− η∥σe(t)∥

≤ ∥σe(t)∥
[
− η + ∥

(
H⊤

a S−⊤PS−1Ha

)−1 ∥

∥H⊤
a S−⊤PS−1∥∥(Aa − LpCa)∥∥e(t)∥

]
(39)

Thus, for any value of

η ≥ ∥
(
H⊤

a S−⊤PS−1Ha

)−1 ∥∥H⊤
a S−⊤PS−1∥

∥(Aa − LpCa)∥∥e(t)∥,

(39) is finally obtained as

V̇se(t) ≤ 0. (40)

Similarly, differentiating (18) along the trajectories of (12), we get250

σ̇x̂(t) = G
(
Ax̂(t)− Lp1Cae(t) +Bu(t) +Bus1(t)

−Ax̂(t) +BKxx̂(t) +BKrr(t)
)

= −GLp1
Cae(t) + u(t) + us1(t)

+Kxx̂(t) +Krr(t)

= −GLp1
Cae(t)− µc1σx̂(t)− µc2sign(σx̂(t))

+us1(t). (41)

17



Now, differentiating (34), we get

V̇sx̂(t) = σx̂(t)
⊤σ̇x̂(t)

= σx̂(t)
⊤
[
−GLp1Cae(t)− µc1σx̂(t)

−µc2sign(σx̂(t)) + us1(t)
]

≤ ∥GLp1
Ca∥∥e(t)∥∥σx̂(t)∥ − µc1σx̂(t)

2

−µc2∥σx̂(t)∥+ σx̂(t)
⊤us1(t). (42)

Noticing that

σx̂(t)
⊤us1(t) ≤ (f∗

a + f∗
s + η)∥σx̂(t)∥

Thus, (42) becomes

V̇sx̂(t) ≤ −µc1σx̂(t)
2 −

(
µc2 − ∥GLp1Ca∥∥e(t)∥

−(f∗
a + f∗

s + η)
)
∥σx̂(t)∥. (43)

For any value of µc2 ≥ (f∗
a + f∗

s + η)+ ∥GLp1
Ca∥∥e(t)∥, (42) is finally obtained

as

V̇sx̂(t) ≤ 0. (44)

Thus, from (40) and (45), it follows that

V̇s(t) = V̇sx̂(t) + V̇se(t) ≤ 0, (45)

which implies that the reachability of the sliding surfaces in both state estimation

and error estimation spaces can be guaranteed with the proposed controller.

This completes the proof.255

3.5. Design of Feedback and Feed-Forward Control Gain

The feedback control gain Kx can be designed by any state feedback control

design method to achieve the desired nominal performance. In this work, Kx is

designed satisfying the infinite horizon Linear Quadratic Regulator (LQR) cost

function to achieve optimal control input. The LQR problem to design Kx and

18



Kr is stated below.

Determine the nominal control uc(t) by solving the cost function

Jcf = min
uc(t)

∫ ∞

0

(
x̂(τ)⊤Qcx̂(τ) + uc(τ)

⊤Rcuc(τ)
)
dτ (46)

subject to

Ax̂(t) +Buc(t) = 0, (47a)

Cx̂(t) = r(t), (47b)

where Qc ≥ 0 ∈ Rn×n and Rc > 0 ∈ Rm×m are appropriate weighing matrices.

The values of Kx and Kr to satisfy (46) and (47) are given by [25]

Kx = R−1
c B⊤Pc (48)

and

Kr =
(
C(A−BKx)

−1B
)−1

(49)

where Pc is the symmetric positive definite matrix which satisfies the algebraic

Riccati equation

A⊤Pc + PcA+Qc − PcBR−1
c B⊤Pc = 0. (50)

4. Application to PWR Nuclear Power Plant

In this section, the efficacy of the proposed FE based FTC scheme discussed

in Section 3 has been illustrated through simulation results by applying it to a

PWR-NPP in the presence of actuator and sensor faults. The non-linear dy-260

namic model of PWR-NPP adopted in this study considers the dynamics of the

reactor core, thermal hydraulics, piping and plenum, pressurizer, steam gener-

ator, condenser, and turbine-governor system, in addition to various actuators

and sensors. A detailed description of the model and its associated subsystems

can be found in [26, 27, 28]. A simplified block diagram of the PWR-NPP265

showing interconnections of various subsystems is shown in Fig. 1. First, the

nonlinear model of PWR-NPP is linearised around the steady state operating
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Figure 1: A simple block diagram representation of different interconnected subsystems in a

PWR-NPP.

point to obtain the linear model, which is then used to design the proposed FE

based FTC scheme. For definitions of the system state vector x(t), the con-

trol input vector u(t), the output vector y(t), and the elements of the system270

matrices A, B, and C, for each control loop the readers are kindly referred to

[29]. The proposed FTC scheme is designed to achieve stable response as well as

adequate degree of robustness in the presence of faults. In this study, the pro-

posed control algorithm is applied to reactor core power control loop and steam

generator pressure control loop of the PWR-NPP and its performance is tested275

in the presence of both actuator and sensor faults for set-point change. How-

ever, the proposed control scheme can be designed and successfully applied to

other control loops of PWR-NPP, such as temperature control loop, pressurizer

pressure and level control loop, and turbine speed control loop.

4.1. Reactor Power Control Loop (Load Following Mode of Operation)280

In load-following mode of operation, the reactor power adjusts according

to the electricity demand throughout the day. The reactor power is controlled

by varying the control rod movement speed vrod(t) and the reactor power is

measured with the help of excore detector current ilo(t). For this control loop,

the values of design parameters for the FE proposed in (4) and the FTC proposed285

20



in (17) are selected as follows: The matrix LD is selected as [024×1 1]⊤, the

discontinuous observer gain µo is selected as 0.2, and the matrix P ∈ R25×25

is obtained with help of LMI Toolbox of MATLAB. The state feedback control

gain Kx is designed with help of LQR control technique by selecting the values

of Qc and Rc as 1×10−3I25 and 1×103, respectively. The discontinuous control290

gains µc1 and µc2 are selected as 0.1 and 1, respectively.

Here, the objective is to track the demand power variations precisely in spite

of the presence of actuator and sensor faults in the system. It is assumed that

the actuator fault fa(t) and sensor fault fs(t) have the following form

fa(t) =
{
5× 10−4 sin(0.1t), t > 0

fs(t) =

 5× 10−3 + 1× 10−2 sin(0.2(t− 1)), t > 250

0, elsewhere.

To cover a wide variety of time varying faults, we have considered the above

mentioned faults in the system. In the literature [23, 24], sinusoidal type of

faults are considered to test the effectiveness of controllers and the similar type

has been adopted here. The reference excore detector current corresponds to

demand power is varied as follows:

ireflo (t) =


19.6554, 0 ≤ t ≤ 100

19.6554− 4.5× 10−3(t− 100), 100 < t ≤ 120

19.5658, elsewhere.

First, the performance of the robust observer is analysed. As the actuator fault295

will be automatically overcome by the SMC, in this study, only the sensor fault

has been estimated and the information of which is then used to design the

FTC. Initially, it is assumed that the reactor is operating at steady state and

all the state variables are in equilibrium. The initial condition for the estimated

states are considered same as that of the actual states and for the estimated300

fault it is considered equal to zero. Fig. 2 shows the variation of actual sensor

fault and estimated sensor fault with the robust FE as proposed in (4). It can

be observed that the proposed estimator is able to estimate the sensor fault
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perfectly in spite of the presence of actuator fault in the system. To show the

robustness of the proposed estimator over conventional observer, the proposed305

estimator performance is compared with the PI observer (setting the discontin-

uous injection input us(t) = 0 in (4)). From Fig. 3, it can be observed that, the

PI observer is unable to follow the sensor fault and the observer performance is

badly affected by the actuator fault present in the system.

Secondly, the performance of the overall FE based FTC scheme is analysed.310

The response of the closed-loop system with and without FTC scheme is shown

in Fig. 4. It can be observed that the proposed FTC scheme is able to overcome

both actuator as well as sensor fault present in the system while, without FTC

scheme, the system performance is badly affected by the faults. As the actuator

fault satisfies the matching condition, its effect is automatically overcome by315

the SMC while, to eliminate the effect caused by the sensor fault, the output

of the system is compensated by the estimated sensor fault. Furthermore, the

closed-loop system response in fault free condition is also analysed and it is

shown in Fig. 5. It can be observed that the performance of the proposed FTC

is almost identical to the performance in fault free condition. During transient320

variation of control rod speed movement is shown in Fig. 6. Control input

can be observed to be free from chattering. To cancel the effect of sinusoidal

actuator fault, control rod movement speed is also varying sinusoidally but the

magnitude of oscillation is very less.

4.2. Steam Generator Pressure Control Loop325

In this control loop, objective is to maintain the pressure in the steam gen-

erator. The steam generator pressure Ps(t) is controlled by adjusting the input

signal to the turbine-governor valve utg(t). For this control loop, the values of

design parameters for the FE proposed in (4) and the FTC proposed in (17) are

selected as follows:330

� LD = [024×1 1]⊤

� µo = 5
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Figure 2: Actual and estimated sensor fault with discontinuous injection.
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Figure 3: Actual and estimated sensor fault without discontinuous injection.

� Qc = 0.1I25 and Rc = 1× 103

� µc1 = 10 and µc2 = 1.

It is assumed that the actuator fault fa(t) and sensor fault fs(t) have the fol-335

lowing form

fa(t) =
{
6× 10−3 sin(0.1t), t > 0
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Figure 4: Excore detector current with and without fault tolerant control.
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Figure 5: Excore detector current in fault free condition.

fs(t) =



1× 10−3 + 3× 10−3

200 ≥ t < 350
×sin(0.15(t− 1)),

5× 10−3sin(0.3t+ π), 350 ≥ t < 500

0, elsewhere
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Figure 6: Control rod speed moment during demand power manoeuvring.

The reference signal change in secondary pressure is applied as follows:

prefs =



7.29, 0 ≤ t ≤ 50

8.86× 10−4(t− 50) + 7.29, 50 < t ≤ 100

7.33, 100 < t ≤ 300

−8.86× 10−4(t− 300) + 7.33, 300 < t ≤ 350

7.29, elsewhere.

Similar to reactor core power control loop, in this loop also first performance

of the proposed FE is analysed. Figs. 7 and 8 show the variation of actual

sensor fault and estimated sensor fault for the proposed FE and PI observer,

respectively. In this case also, it can be observed that, compared to PI observer340

the proposed estimator able to estimate the sensor fault perfectly in spite of

the presence of actuator fault in the system. Secondly, the performance of the

overall FE based FTC scheme is analysed. The response of the closed-loop

system with and without FTC scheme is shown in Fig. 9. It can be observed

that the proposed FTC scheme is able to overcome both actuator as well as345

sensor fault more effectively compared the closed-loop system without FTC

scheme. The closed-loop system response in fault free condition is shown in Fig.

10. In this case also, it can be observed that the performance of the proposed

FTC is almost identical to the performance in fault free condition. Finally,
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Figure 7: Actual and estimated sensor fault with discontinuous injection.
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Figure 8: Actual and estimated sensor fault without discontinuous injection.

variation of control signal to turbine-governor valve is shown in Fig. 11.350

5. Conclusions

In this paper, the problem of simultaneous state and fault estimation and

fault-tolerant controller design has been investigated for pressurized water re-

actor type nuclear power plant subject to simultaneous actuator and sensor

faults. A descriptor sliding mode observer has been proposed to obtain the es-355

timates for both system states and sensor faults simultaneously. Based on the
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Figure 9: Steam generator pressure with and without fault tolerant control.
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Figure 10: Steam generator secondary pressure in fault free condition.

information provided by the observer, a fault tolerant controller is designed us-

ing integral sliding mode control technique to stabilize the resulting closed-loop

system. A sufficient condition based on the feasibilities of linear matrix inequal-

ities is derived for the asymptotic stability of the overall closed-loop system.360

Finally, the effectiveness of the proposed fault tolerant control scheme has been

demonstrated by applying it to reactor power control loop and steam genera-

tor pressure control loop of pressurized water reactor type nuclear power plant.

Future work will consider apply the proposed fault tolerant control technique
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Figure 11: Control signal to turbine-governor valve.

to faulty systems considering different types and combinations of the faults and365

measurement noise.
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A. Proof of Lemma 1370

Proof. It is observed that the system matrices Ea and Ca satisfy

rank

Ea

Ca

 = rank


In 0n×p

0p×n 0p×p

C Ip

 = n+ p. (51)

Let us define LD as

LD =

 0n×p

W

 ,

where W ∈ Rp×p and is selected as W = diag(w1, w2, . . . , wp) with wi > 0.

Thus,

S = (Ea + LDCa) =

 In 0n×p

WC W

 ,
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S−1 =

 In 0n×p

−C W−1

 ,

CaS
−1LD =

[
C Ip

] In 0n×p

WC W

 0n×p

W

 = Ip,

and

AaS
−1LD =

 A 0n×p

0p×n −Ip

 In 0n×p

WC W

 0n×p

W


=

 0n×p

−Ip

 = −R.

This completes the proof.
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