Abstract
DNA three-way junctions (3WJs) are branched structures that serve as important biological intermediates and as components in DNA nanostructures. We recently derived the global structure of a fully complementary 3WJ and found that it contained unpaired bases at the branchpoint, which is consistent with previous observations of branch flexibility and branchpoint reactivity. By combining high-resolution single-molecule Förster resonance energy transfer, molecular modeling, time-resolved ensemble fluorescence spectroscopy, and the first (19)F nuclear magnetic resonance observations of fully complementary 3WJs, we now show that the 3WJ structure can adopt multiple distinct conformations depending upon the sequence at the branchpoint. A 3WJ with a GC-rich branchpoint adopts an open conformation with unpaired bases at the branch and at least one additional conformation with an increased number of base interactions at the branchpoint. This structural diversity has implications for branch interactions and processing in vivo and for technological applications.
More Information
Identification Number: | https://doi.org/10.1021/acs.biochem.7b00677 |
---|---|
Status: | Published |
Refereed: | Yes |
Uncontrolled Keywords: | 0601 Biochemistry And Cell Biology, 1101 Medical Biochemistry And Metabolomics, 0304 Medicinal And Biomolecular Chemistry, Biochemistry & Molecular Biology, |
Depositing User (symplectic) | Deposited by Bayjoo, Jennifer on behalf of Sabir, Tara |
Date Deposited: | 09 Oct 2017 11:30 |
Last Modified: | 13 Jul 2024 05:20 |
Item Type: | Article |
Export Citation
Explore Further
Read more research from the author(s):