Abstract
Transition metals are essential trace elements and their high-affinity uptake is required for many organisms. Metal transporters are often characterised using metal-sensitive fluorescent dyes, limiting the metals and experimental conditions that can be studied. Here, we have tested whether metal transport by Enterococcus faecalis MntH2 can be measured with an electrophysiology method that is based on the solid-supported membrane technology. E. faecalis MntH2 belongs to the Natural Resistance-Associated Macrophage Protein (Nramp) family of proton-coupled transporters, which transport divalent transition metals and do not transport the earth metals. Electrophysiology confirms transport of Mn(II), Co(II), Zn(II) and Cd(II) by MntH2. However, no uptake responses for Cu(II), Fe(II) and Ni(II) were observed, while the presence of these metals abolishes the uptake signals for Mn(II). Fluorescence assays confirm that Ni(II) is transported. The data are discussed with respect to properties and structures of Nramp-type family members and the ability of electrophysiology to measure charge transport and not directly substrate transport.
More Information
Identification Number: | https://doi.org/10.3390/membranes10100255 |
---|---|
Status: | Published |
Refereed: | Yes |
Publisher: | MDPI AG |
Uncontrolled Keywords: | 0904 Chemical Engineering, 0905 Civil Engineering, 0907 Environmental Engineering, |
Depositing User (symplectic) | Deposited by Morris, Helen on behalf of Postis, Vincent |
Date Deposited: | 05 Oct 2020 13:16 |
Last Modified: | 11 Jul 2024 07:36 |
Item Type: | Article |
Export Citation
Explore Further
Read more research from the author(s):