Abstract
The classic Johnson–Kendall–Roberts (JKR) contact theory was developed for frictionless adhesive contact between two isotropic elastic spheres. The advantage of the classical JKR formalism is the use of the principle of superposition of solutions to non-adhesive axisymmetric contact problems. In the recent years, the JKR formalism has been extended to other cases, including problems of contact between an arbitrary-shaped blunt axisymmetric indenter and a linear elastic half-space obeying rotational symmetry of its elastic properties. Here the most general form of the JKR formalism using the minimal number of conditions is studied. The corresponding condition of energy balance is developed. For the axisymmetric case and a convex indenter, the condition is reduced to a set of expressions allowing explicit transformation of force–displacement curves from non-adhesive to corresponding adhesive cases. The implementation of the developed theory is demonstrated by presentation of a two-term asymptotic adhesive solution of the contact between a thin elastic layer and a rigid punch of arbitrary axisymmetric shape. Some aspects of numerical implementation of the theory by means of Finite-Element Method are also discussed. This article is part of a discussion meeting issue ‘A cracking approach to inventing new tough materials: fracture stranger than friction’.
More Information
Identification Number: | https://doi.org/10.1098/rsta.2020.0374 |
---|---|
Status: | Published |
Refereed: | Yes |
Publisher: | The Royal Society |
Uncontrolled Keywords: | General Science & Technology, |
Depositing User (symplectic) | Deposited by Blomfield, Helen |
Date Deposited: | 29 Jun 2021 11:11 |
Last Modified: | 23 Feb 2022 11:04 |
Item Type: | Article |
Download
Note: this is the author's final manuscript and may differ from the published version which should be used for citation purposes.
| Preview
Export Citation
Explore Further
Read more research from the author(s):