Abstract
This paper presents a Chainlet based Multi-Band Ear Recognition using Support Vector Machine (CMBER-SVM) algorithm. The proposed method divides the gray input image into a number of bands based on the intensity of its pixels, resembling a hyperspectral image. It then applies Canny edge detection on each resulting normalized band, extracting edges that represent the ear pattern in each band. The resulting binary edge maps are then flattened, generating a single binary edge map. This edge map is then split into non-overlapping cells and the Freeman chain code for each group of connected edges within each cell is calculated. A histogram of each group of contiguous four cells is calculated, and the results histograms are then normalized and concatenated to form a chainlet for the input image. The resulting chainlet histogram vectors of the images of the dataset are then used for training and testing a pairwise Support Vector Machine (SVM). Experimental results on images of two benchmark ear image datasets show that the proposed CMBER-SVM technique outperforms both the state of the art statistical and learning based ear recognition methods. Index Terms—ear recognition, chainlets, support vector machine, multi-band image generation
More Information
Status: | Unpublished |
---|---|
Refereed: | Yes |
Additional Information: | © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
Uncontrolled Keywords: | Ear recognation, Chainlet, Multi-band, |
Depositing User (symplectic) | Deposited by Sheikh Akbari, Akbar |
Date Deposited: | 07 Dec 2021 17:49 |
Last Modified: | 23 Jul 2024 05:11 |
Event Title: | IEEE International Conference on Imaging Systems and Techniques |
Event Dates: | 24 August 2021 - 26 August 2021 |
Item Type: | Conference or Workshop Item (Paper) |
Download
Note: this is the author's final manuscript and may differ from the published version which should be used for citation purposes.
| Preview
Export Citation
Explore Further
Read more research from the author(s):