Abstract
The motor drive system plays a significant role in the safety of electric vehicles as a bridge for power transmission. Meanwhile, to enhance the efficiency and stability of the drive system, more and more studies based on AI technology are devoted to the fault detection and diagnosis of the motor drive system. This paper reviews the application of AI techniques in motor fault detection and diagnosis in recent years. AI-based FDD is divided into two main steps: feature extraction and fault classification. The application of different signal processing methods in feature extraction is discussed. In particular, the application of traditional machine learning and deep learning algorithms for fault classification is presented in detail. In addition, the characteristics of all techniques reviewed are summarized. Finally, the latest developments, research gaps and future challenges in fault monitoring and diagnosis of motor faults are discussed.
More Information
Identification Number: | https://doi.org/10.1109/TTE.2021.3110318 |
---|---|
Status: | Published |
Refereed: | Yes |
Additional Information: | © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
Uncontrolled Keywords: | 0906 Electrical and Electronic Engineering, |
Depositing User (symplectic) | Deposited by Deng, Jiamei |
Date Deposited: | 23 Nov 2021 17:24 |
Last Modified: | 10 Jul 2024 16:24 |
Item Type: | Article |
Download
Note: this is the author's final manuscript and may differ from the published version which should be used for citation purposes.
| Preview
Export Citation
Explore Further
Read more research from the author(s):