Abstract
It is widely accepted that human activities largely contribute to global emissions and thus, greatly impact climate change. Awareness promotion and adoption of green transportation mode could make a difference in the long term. To achieve behavioural change, we investigate the use of a persuasive game utilising online transportation mode recognition to afford bonuses and penalties to users based on their daily choices of transportation mode. To facilitate an easy identification of transportation mode, classification predictive models are built based on accelerometer and gyroscope historical data. Preliminary results show that the classification true-positive rate for recognising 10 different transportation classes can reach up to 95% when using a historical set (66% without). Results also reveal that the random tree classification model is a viable choice compared to random forest in terms of sustainability. Qualitative studies of the trained classifiers and measurements of Android-device gravity also raise several issues that could be addressed in future work. This research work could be enhanced through acceleration normalisation to improve device and user ambiguity.
More Information
Identification Number: | https://doi.org/10.3390/app11198901 |
---|---|
Status: | Published |
Refereed: | Yes |
Publisher: | MDPI |
Depositing User (symplectic) | Deposited by Kor, Ah-Lian |
Date Deposited: | 26 Jan 2022 13:48 |
Last Modified: | 10 Jul 2024 17:21 |
Item Type: | Article |
Download
Note: this is the author's final manuscript and may differ from the published version which should be used for citation purposes.
License: Creative Commons Attribution
| Preview
Export Citation
Explore Further
Read more research from the author(s):